DOI QR코드

DOI QR Code

Field Sanitation and Foliar Application of Streptomyces padanus PMS-702 for the Control of Rice Sheath Blight

  • Yang, Chia-Jung (Department of Plant Pathology, National Chung Hsing University) ;
  • Huang, Tzu-Pi (Department of Plant Pathology, National Chung Hsing University) ;
  • Huang, Jenn-Wen (Department of Plant Pathology, National Chung Hsing University)
  • Received : 2020.12.16
  • Accepted : 2021.01.06
  • Published : 2021.02.01

Abstract

Rice sheath blight (ShB), caused by Rhizoctonia solani Kühn AG1-IA, is one of the destructive rice diseases worldwide. The aims of this study were to develop biocontrol strategies focusing on field sanitation and foliar application with a biocontrol agent for ShB management. Streptomyces padanus PMS-702 showed a great antagonistic activity against R. solani. Fungichromin produced by S. padanus PMS-702, at 3.07 mg/l inhibited 50% mycelial growth, caused leakage of cytoplasm, and inhibited the formation of infection structures of R. solani. Fungichromin could reach to 802 mg/l when S. padanus PMS-702 was cultured in MACC broth for 6 days. Addition of 0.5% S. padanus PMS-702 broth into soil decreased the survival rate of the pathogen compared to the control. Soil amended with 0.5% S. padanus broth and 0.5% tea seed pomace resulted in the death of R. solani mycelia in the infested rice straws, and the germination of sclerotia was inhibited 21 days after treatment. Greenhouse trials revealed that S. padanus cultured in soybean meal-glucose (SMGC-2) medium after mixing with different surfactants could enhance its efficacy for inhibiting the pathogen. Of six surfactants tested, the addition of 2% tea saponin was the most effective in suppressing the pathogen. S. padanus broth after being fermented in SMGC-2, mixed with 2% tea saponin, diluted 100 fold, and sprayed onto rice plants significantly reduced ShB disease severity. Thus, S. padanus PMS-702 is an effective biocontrol agent. The efficacy of S. padanus PMS-702 for disease control could be improved through formulation.

Keywords

References

  1. Araujo, R., Dunlap, C., Barnett, S.and Franco, C. M. M. 2019. Decoding wheat endosphere-rhizosphere microbiomes in Rhizoctonia solani-infested soils challenged by Streptomyces biocontrol agents. Front. Plant Sci. 10:1038. https://doi.org/10.3389/fpls.2019.01038
  2. Ascencion, L. C., Liang, W.-J., and Yen, T.-B. 2015. Control of Rhizoctonia solani damping-off disease after soil amendment with dry tissues of Brassica results from increase in Actinomycetes population. Biol. Control 82:21-30. https://doi.org/10.1016/j.biocontrol.2014.11.010
  3. Basu, A., Chowdhury, S., Ray Chaudhuri, T. and Kundu, S. 2016. Differential behaviour of sheath blight pathogen Rhizoctonia solani in tolerant and susceptible rice varieties before and during infection. Plant Pathol. 65:1333-1346. https://doi.org/10.1111/ppa.12502
  4. Bonanomi, G., Antignani, V., Pane, C. and Scala, F. 2007. Suppression of soilborne fungal diseases with organic amendments. J. Plant Pathol. 89:311-324.
  5. Boukaew, S. and Prasertsan, P. 2014. Suppression of rice sheath blight disease using a heat stable culture filtrate from Streptomyces philanthi RM-1-138. Crop Prot. 61:1-10. https://doi.org/10.1016/j.cropro.2014.02.012
  6. Buzon-Duran, L., Perez-Lebena, E., Martin-Gil, J., Sanchez-Bascones, M. and Martin-Ramos, P. 2020. Applications of Streptomyces spp. enhanced compost in sustainable agriculture. In: Biology of composts, eds. by M. K. Meghvansi and A. Varma, pp. 257-291. Springer, Cham, Switzerland.
  7. Chang, Y.-C. 1986. Studies on the effect of disease severity of sheath blight on rice yield. J. Agric. Res. China 35:202-209.
  8. Chen, L.-H., Zhang, J., Shao, X.-H., Wang, S.-S., Miao, Q.-S., Mao, X.-Y., Zhai, Y.-M. and She, D.-L. 2015. Development and evaluation of Trichoderma asperellum preparation for control of sheath blight of rice (Oryza sativa L.). Biocontrol Sci. Technol. 25:316-328. https://doi.org/10.1080/09583157.2014.977225
  9. Choi, D. B., Tamura, S., Park, Y. S., Okabe, M., Seriu, Y. and Takeda, S. 1996. Efficient tylosin production from Streptomyces fradiae using rapeseed oil. J. Ferment. Bioeng. 82:183-186. https://doi.org/10.1016/0922-338X(96)85047-1
  10. de Lima Procopio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L. and de Araujo, J. M. 2012. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 16:466-471. https://doi.org/10.1016/j.bjid.2012.08.014
  11. Efimova, S. S., Schagina, L. V. and Ostroumova, O. S. 2014. Investigation of channel-forming activity of polyene macrolide antibiotics in planar lipid bilayers in the presence of dipole modifiers. Acta Naturae 6:67-79. https://doi.org/10.32607/20758251-2014-6-4-67-79
  12. Fan, Y.-T. 2017. Efficacy of a biocontrol product of Streptomyces padanus PMS-702 for controlling cucumber downy mildew. M.S. thesis. National Chung Hsing University, Taichung, Taiwan (in Chinese).
  13. Fan, Y.-T., Chung, K.-R. and Huang, J.-W. 2019. Fungichromin production by Streptomyces padanus PMS-702 for controlling cucumber downy mildew. Plant Pathol. J. 35:341-350. https://doi.org/10.5423/PPJ.OA.03.2019.0057
  14. Food and Agriculture Organization of the United Nations. 2020. World food and agriculture: statistical yearbook 2020. Food and Agriculture Organization of the United Nations, Rome, Italy. pp. 351.
  15. Feng, S., Shu, C., Wang, C., Jiang, S. and Zhou, E. 2017. Survival of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight, under different environmental conditions. J. Phytopathol. 165:44-52. https://doi.org/10.1111/jph.12535
  16. Guo, N., Tong, T., Ren, N., Tu, Y. and Li, B. 2018. Saponins from seeds of Genus Camellia: phytochemistry and bioactivity. Phytochemistry 149:42-55. https://doi.org/10.1016/j.phytochem.2018.02.002
  17. Gwynn, R. 2021. Manual of biocontrol agents online. URL https://www.bcpc.org/my-account [16 December 2020].
  18. Harikrishnan, H., Shanmugaiah, V., Balasubramanian, N., Sharma, M. P. and Kotchoni, S. O. 2014. Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against sheath blight of rice disease. World J. Microbiol. Biotechnol. 30:3149-3161. https://doi.org/10.1007/s11274-014-1742-9
  19. Hsieh, S. P. Y., Huang, R. Z. and Wang, T. C. 1996. Application of tannic acid qualitative and quantitative growth assay of Rhizotonia spp. Plant Pathol. Bull. 5:100-106 (in Chinese).
  20. Huang, J. W. and Kuhlman, E. G. 1991. Formulation of a soil amendment to control damping-off of slash pine seedlings. Phytopathology 81:163-170. https://doi.org/10.1094/Phyto-81-163
  21. International Rice Research Institute. 2013. Standard evaluation system for rice. 5th ed. International Rice Research Institute, Manila, Philippines. 55 pp.
  22. Jia, Y., Correa-Victoria, F., McClung, A., Zhu, L., Liu, G., Wamishe, Y., Xie, J., Marchetti, M. A., Pinson, S. R. M., Rutger, J. N. and Correll, J. C. 2007. Rapid Determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis. 91:485-489. https://doi.org/10.1094/PDIS-91-5-0485
  23. Kakar, K. U., Nawaz, Z., Cui, Z., Almoneafy, A. A., Ullah, R. and Shu, Q.-Y. 2018. Rhizosphere-associated Alcaligenes and Bacillus strains that induce resistance against blast and sheath blight diseases, enhance plant growth and improve mineral content in rice. J. Appl. Microbiol. 124:779-796. https://doi.org/10.1111/jam.13678
  24. Kampfer, P. 2006. The family streptomycetaceae, part I: taxonomy. In: The Prokaryotes: a handbook on the biology of bacteria: archaea. bacteria: firmicutes, actinomycetes, Vol.3, 3rd ed., eds. by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt, pp. 538-604. Springer, New York, NY, USA.
  25. Kijprayoon, S., Tolieng, V., Petsom, A. and Chaicharoenpong, C. 2014. Molluscicidal activity of Camellia oleifera seed meal. ScienceAsia 40:393-399. https://doi.org/10.2306/scienceasia1513-1874.2014.40.393
  26. Kuo, P.-C., Lin, T.-C., Yang, C.-W., Lin, C.-L., Chen, G.-F. and Huang, J.-W. 2010. Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani. J. Agric. Food Chem. 58:8618-8622. https://doi.org/10.1021/jf1017115
  27. Lee, F. N. and Rush, M. C. 1983. Rice sheath blight: a major rice disease. Plant Dis. 67:829-832. https://doi.org/10.1094/PD-67-829
  28. Mun, B.-G., Lee, W.-H., Kang, S.-M., Lee, S.-U., Lee, S.-M., Lee, D. Y., Shahid, M., Yun, B.-W. and Lee, I.-J. 2020. Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant Soil 448:87-103. https://doi.org/10.1007/s11104-019-04411-4
  29. Palaniyandi, S. A., Yang, S. H., Zhang, L. and Suh, J.-W. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97:9621-9636. https://doi.org/10.1007/s00253-013-5206-1
  30. Peng, D., Li, S., Wang, J., Chen, C. and Zhou, M. 2014. Integrated biological and chemical control of rice sheath blight by Bacillus subtilis NJ-18 and jinggangmycin. Pest Manag. Sci. 70:258-263. https://doi.org/10.1002/ps.3551
  31. Phillips, A. J., Sudbery, I. and Ramsdale, M. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 100:14327-14332. https://doi.org/10.1073/pnas.2332326100
  32. Sanchez, S. and Demain, A. L. 2002. Metabolic regulation of fermentation processes. Enzyme Microb. Technol. 31:895-906. https://doi.org/10.1016/S0141-0229(02)00172-2
  33. Sharma, V., Sharma, A., Malannavar, A. B. and Salwan, R. 2020. Molecular aspects of biocontrol species of Streptomyces in agricultural crops. In: Molecular aspects of plant beneficial microbes in agriculture, eds. by V. Sharma, R. Salwan and L. K. T. Al-Ani, pp. 89-109. Academic Press, London, UK.
  34. Shih, H.-D. 2003. Control of crop diseases with Streptomyces padanus PMS-702 and identification of fungichromin as its major antifungal metabolite related to suppress plant pathogens. Ph.D. thesis. National Chung Hsing University, Taichung, Taiwan (in Chinese).
  35. Shrestha, B. K., Karki, H. S., Groth, D. E., Jungkhun, N. and Ham, J. H. 2016. Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS ONE 11:e0146764. https://doi.org/10.1371/journal.pone.0146764
  36. Singh, V., Khan, M., Khan, S. and Tripathi, C. K. M. 2009. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl. Microbiol. Biotechnol. 82:379-385. https://doi.org/10.1007/s00253-008-1828-0
  37. Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M. and Tripathi, C. K. M. 2017. Strategies for fermentation medium optimization: an in-depth review. Front. Microbiol. 7:2087. https://doi.org/10.3389/fmicb.2016.02087
  38. Tsai, W. H. 1975. Studies on the relationship of disease severity of yield and yield loss of rice sheath blight disease. Plant Prot. Bull. Taiwan 17:410-417.
  39. Waksman, S. A., Schatz, A. and Reynolds, D. M. 2010. Production of antibiotic substances by actinomycetes. Ann. N. Y. Acad. Sci. 1213:112-124. https://doi.org/10.1111/j.1749-6632.2010.05861.x
  40. Wang, C. J. and Liu, Z. Q. 2007. Foliar uptake of pesticides: present status and future challenge. Pestic. Biochem. Physiol. 87:1-8. https://doi.org/10.1016/j.pestbp.2006.04.004
  41. Wu, J.-Y., Huang, J.-W., Shih, H.-D., Lin, W.-C. and Liu, Y.-C. 2008. Optimization of cultivation conditions for fungichromin production from Streptomyces padanus PMS-702. J. Chin. Inst. Chem. Eng. 39:67-73. https://doi.org/10.1016/j.jcice.2007.11.006
  42. Xiong, Z.-Q., Tu, X.-R., Wei, S.-J., Huang, L., Li, X.-H., Lu, H. and Tu, G.-Q. 2013. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from Streptomyces padanus JAU4234 on the rice sheath blight pathogen Rhizoctonia solani. PLoS ONE 8:e73884. https://doi.org/10.1371/journal.pone.0073884
  43. Yang, C.-W. 2006. Effect of tea seed pomace on control of cabbage seedling damping-off caused by Rhizoctonia solani AG-4 and identification for its major ingredient of antifungal activity. M.S. thesis. National Chung Hsing University, Taichung, Taiwan.
  44. Yuan, W. M. and Crawford, D. L. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol. 61:3119-3128. https://doi.org/10.1128/aem.61.8.3119-3128.1995
  45. Zang, C.-Z., Chang, Y.-N., Chen, H.-B., Wu, J.-Y., Chen, C.-I., Huang, J.-W., Shih, H.-D. and Liu, Y.-C. 2011. Deciphering the roles of fatty acids and oils in fungichromin enhancement from Streptomyces padanus. J. Taiwan Inst. Chem. Eng. 42:413-418. https://doi.org/10.1016/j.jtice.2010.09.010
  46. Zhang, S.-W., Yang, Y., Wu, Z.-m. and Li, K.-t. 2020. Induced defense responses against Rhizoctonia solani in rice seedling by a novel antifungalmycin N2 from Streptomyces sp. N2. Australas. Plant Pathol. 49:267-276. https://doi.org/10.1007/s13313-020-00703-x
  47. Zhou, X. G. and Everts, K. L. 2004. Suppression of Fusarium wilt of watermelon by soil amendment with hairy vetch. Plant Dis. 88:1357-1365. https://doi.org/10.1094/PDIS.2004.88.12.1357
  48. Zhou, W., Liu, X., Zhang, P., Zhou, P. and Shi, X. 2014. Effect analysis of mineral salt concentrations on nosiheptide production by Streptomyces actuosus Z-10 using response surface methodology. Molecules 19:15507-15520. https://doi.org/10.3390/molecules191015507
  49. Zhu, H., Wang, Z. X., Luo, X. M., Song, J. X. and Huang, B. 2014. Effects of straw incorporation on Rhizoctonia solani inoculum in paddy soil and rice sheath blight severity. J. Agric. Sci. 152:741-748. https://doi.org/10.1017/S002185961300035X