DOI QR코드

DOI QR Code

Characteristics of Microbial Community Structures of the Methane Hydrate Sediments in the Ulleung Basin, East Sea of Korea

동해 울릉분지 메탄 하이드레이트 퇴적토의 미생물 군집 특성

  • Shin, Ji-Hye (Department of Microbiology, Chungbuk National University) ;
  • Nam, Ji-Hyun (Department of Biology, Kyungsung University) ;
  • Lee, Jin-Woo (Department of Microbiology, Chungbuk National University) ;
  • Lee, Dong-Hun (Department of Microbiology, Chungbuk National University)
  • Received : 2014.05.27
  • Accepted : 2014.07.28
  • Published : 2014.09.30

Abstract

Gas hydrates play a significant role in the global carbon cycle and climate change because methane, a greenhouse gas, can be released from the dissociation of gas hydrate. Anaerobic oxidation of methane (AOM) is an important process that consumes more than 90% of the methane released into the hydrosphere and atmosphere. In this study, the microbial community associated with the methane gas hydrate sediment in the Ulleung basin, East Sea of Korea (UBGH) was analyzed by phylogenetic analysis of the mcrA and 16S rRNA gene libraries. A vertical stratification of the dominating anaerobic methane oxidizer (ANME)-1 group was observed at the surface and the sulfate methane transition zone (SMTZ). The ANME-2c group was found to be dominant in the high methane layer. The archaea of marine benthic group B, which is commonly observed in the AOM region, accounted for more than 50% of the identifications in all sediments. Nitrate reducing bacteria were predominant at SMTZ (Halomonas: 56.5%) and high methane layer (Achromobacter: 52.6%), while sulfate reducing bacteria were not found in UBGH sediments. These results suggest that the AOM process may be carried out by a syntrophic consortium of ANME and nitrate reducing bacteria in the gas hydrates of the Ulleung Basin of the East Sea.

가스 하이드레이트는 높은 지구 온난화 잠재력을 가지고 있는 메탄가스를 해수 또는 대기 중으로 유입시킬 수 있어 전 지구적 탄소순환과정과 기후 변화에 중요한 역할을 한다. 따라서 해양 또는 대기로 방출되는 메탄의 90% 이상을 미생물 반응을 통해 산화시킬 수 있는 혐기적 메탄산화 과정이 매우 중요하다. 본 연구에서는 동해 울릉분지내 메탄 가스 하이드레이트 퇴적토에 서식하는 미생물 군집의 mcrA 유전자와 16S rRNA 유전자를 분석하였다. 혐기적 메탄산화 고세균(Anaerobic methane oxidizer: ANME) 군집의 수직적 분포를 조사한 결과, 표층과 황산염 메탄전이대(Sulfate methane transition zone: SMTZ)에서는 ANME-1 그룹이, high methane 층에서는 ANME-2c 그룹이 우점하였다. 16S rRNA 유전자를 이용한 고세균의 군집분석 결과, 혐기적 메탄산화가 일어나는 지역에서 주로 발견되는 marine benthic group-B가 50% 이상의 비율로 우점하였다. 세균의 경우 질산염을 환원시킬 수 있는 세균이 SMTZ (Halomonas 속: 56.5%)와 high methane 층(Achromobacter 속: 52.6%)에서 우점하였으며 황산염 환원 세균 군집은 확인되지 않았다. 동해 울릉분지 메탄가스 하이드레이트의 혐기적 메탄산화과정은 일반적으로 해양 퇴적토에서 알려진 혐기적 메탄산화 고세균과 황산염 환원 세균과의 공생에 의한 반응이 아닌 혐기적 메탄산화 고세균과 질산염 환원세균에 의한 반응이 주도할 것이라 생각된다.

Keywords

References

  1. Caldwell, S.L., Laidler, J.R., Brewer, E.A., Eberly, J.O., Sandborgh, S.C., and Colwell, F.S. 2008. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ. Sci. Technol. 42, 6791-6799. https://doi.org/10.1021/es800120b
  2. Canfield, D.E., Kristensen, E., and Thamdrup, B. 2005. The Methane Cycle, pp. 383-418. In Canfield, D.E., Kristensen, E., and Thamdrup, B. (eds). Advances in Marine Biology. Academic Press. Orlando, USA.
  3. Constan, L. 2009. Ms. thesis. The University of British Columbia, Vancouver, Canada.
  4. Costa, C., Dijkema, C., Friedrich, M., Garcia-Encina, P., Fernandez-Polanco, F., and Stams, A. 2000. Denitrification with methane as electron donor in oxygen-limited bioreactors. Appl. Microbiol. Biotechnol. 53, 754-762. https://doi.org/10.1007/s002530000337
  5. DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685-5689. https://doi.org/10.1073/pnas.89.12.5685
  6. Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., Schreiber, F., Dutilh, B.E., Zedelius J., and de Beer, D. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543-548. https://doi.org/10.1038/nature08883
  7. Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Rokhsar, D., Richardson, P.M., and DeLong, E.F. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457-1462. https://doi.org/10.1126/science.1100025
  8. Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson, G.W. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567-570. https://doi.org/10.1038/nature12375
  9. Harrison, B.K., Zhang, H., Berelson, W., and Orphan, V.J. 2009. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl. Environ. Microbiol. 75, 1487-1499. https://doi.org/10.1128/AEM.01812-08
  10. He, R., Wooller, M.J., Pohlman, J.W., Quensen, J., Tiedje, J.M., and Leigh, M.B. 2012. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments. ISME J. 6, 1937-1948. https://doi.org/10.1038/ismej.2012.34
  11. Hyun, J., Mok, J., You, O., Kim, D., and Choi, D. 2010. Variations and controls of sulfate reduction in the continental slope and rise of the Ulleung Basin off the Southeast Korean upwelling system in the East Sea. Geomicrobiol. J. 27, 212-222. https://doi.org/10.1080/01490450903456731
  12. Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F.S., and et al. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl. Acad. Sci. USA 103, 2815-2820. https://doi.org/10.1073/pnas.0511033103
  13. Inagaki, F., Suzuki, M., Takai, K., Oida, H., Sakamoto, T., Aoki, K., Nealson, K.H., and Horikoshi, K. 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl. Environ. Microbiol. 69, 7224-7235. https://doi.org/10.1128/AEM.69.12.7224-7235.2003
  14. Jiang, H., Dong, H., Yu, B., Ye, Q., Shen, J., Rowe, H., and Zhang, C. 2008. Dominance of putative marine benthic Archaea in Qinghai Lake, north-western China. Environ. Microbiol. 10, 2355-2367. https://doi.org/10.1111/j.1462-2920.2008.01661.x
  15. Juottonen, H., Galand, P.E., and Yrjala, K. 2006. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res. Microbiol. 157, 914-921. https://doi.org/10.1016/j.resmic.2006.08.006
  16. Kim, B., Cho, H., and Hyun, J. 2010. Community structure, diversity, and vertical distribution of archaea revealed by 16S rRNA gene analysis in the deep sea sediment of the Ulleung Basin, East Sea. Ocean Polar Res. 32, 309-319. https://doi.org/10.4217/OPR.2010.32.3.309
  17. Knittel, K. and Boetius, A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311-334. https://doi.org/10.1146/annurev.micro.61.080706.093130
  18. Knittel, K., Losekann, T., Boetius, A., Kort, R., and Amann, R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467-479. https://doi.org/10.1128/AEM.71.1.467-479.2005
  19. Kopke, B., Wilms, R., Engelen, B., Cypionka, H., and Sass, H. 2005. Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71, 7819-7830. https://doi.org/10.1128/AEM.71.12.7819-7830.2005
  20. Kvenvolden, K.A. 1999. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA 96, 3420-3426. https://doi.org/10.1073/pnas.96.7.3420
  21. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 125-175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Chichester, UK.
  22. Lee, D., Kim, J., Bahk, J., Cho, H., Hyun, J., and Shin, K. 2013b. Geochemical signature related to lipid biomarkers of ANMEs in gas hydrate-bearing sediments in the Ulleung Basin, East Sea (Korea). Mar. Pet. Geol. 47, 125-135. https://doi.org/10.1016/j.marpetgeo.2013.06.003
  23. Lee, J., Kwon, K.K., Azizi, A., Oh, H., Kim, W., Bahk, J., Lee, D., and Lee, J. 2013a. Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Mar. Pet. Geol. 47, 136-146. https://doi.org/10.1016/j.marpetgeo.2013.06.002
  24. Lloyd, K.G., Lapham, L., and Teske, A. 2006. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl. Environ. Microbiol. 72, 7218-7230. https://doi.org/10.1128/AEM.00886-06
  25. Long, C., Lu, X.L., Gao, Y., Jiao, B.H., and Liu, X.Y. 2011. Description of a Sulfitobacter strain and its extracellular cyclodipeptides. Evid. Base. Compl. Alternat. Med. 2011, 393752.
  26. Mata, J.A., Martinez-Canovas, J., Quesada, E., and Bejar, V. 2002. A Detailed phenotypic characterisation of the type strains of Halomonas species. Syst. Appl. Microbiol. 25, 360-375. https://doi.org/10.1078/0723-2020-00122
  27. Nauhaus, K., Boetius, A., Kruger, M., and Widdel, F. 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4, 296-305. https://doi.org/10.1046/j.1462-2920.2002.00299.x
  28. Niemann, H., Losekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E.J., Schluter, M., Klages, M., and et al. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443, 854-858. https://doi.org/10.1038/nature05227
  29. Pachiadaki, M.G., Kallionaki, A., Dahlmann, A., De Lange, G.J., and Kormas, K.A. 2011. Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microb. Ecol. 62, 655-668. https://doi.org/10.1007/s00248-011-9855-2
  30. Pukall, R., Buntefuss, D., Fruhling, A., Rohde, M., Kroppenstedt, R.M., Burghardt, J., Lebaron, P., Bernard, L., and Stackebrandt, E. 1999. Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the alpha-Proteobacteria. Int. J. Syst. Bacteriol. 49 Pt 2, 513-519. https://doi.org/10.1099/00207713-49-2-513
  31. Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Damste, J.S.S., Op den Camp, H.J.M., and et al. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918-921. https://doi.org/10.1038/nature04617
  32. Reeve, J.N., Nolling, J., Morgan, R.M., and Smith, D.R. 1997. Methanogenesis: genes, genomes, and who's on first? J. Bacteriol. 179, 5975-5986. https://doi.org/10.1128/jb.179.19.5975-5986.1997
  33. Roalkvam, I., Dahle, H., Chen, Y., Jorgensen, S.L., Haflidason, H., and Steen, I.H. 2012. Fine-scale community structure analysis of ANME in Nyegga sediments with high and low methane flux. Front. Microbiol. 3, 216.
  34. Rochelle, P.A., Cragg, B.A., Fry, J.C., Parkes, R.J., and Weightman, A.J. 1994. Effect of sample handling on estimation of bacterial diversity in marine-sediments by 16S ribosomal-RNA gene sequence-analysis. FEMS Microbiol. Ecol. 15, 215-225. https://doi.org/10.1111/j.1574-6941.1994.tb00245.x
  35. Ryu, B., Riedel, M., Kim, J., Hyndman, R.D., Lee, Y., Chung, B., and Kim, I. 2009. Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea. Mar. Pet. Geol. 26, 1483-1498. https://doi.org/10.1016/j.marpetgeo.2009.02.004
  36. Sambrook, J. and Russell, D.W. 1989. Molecular cloning: A laboratory manual, 3rd ed., p. 213. Cold spring harbor laboratory press, New York, USA.
  37. Segers, P., Vancanneyt, M., Pot, B., Torck, U., Hoste, B., Dewettinck, D., Falsen, E., Kersters, K., and De Vos, P. 1994. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov., and Brevundimonas vesicularis comb. nov., respectively. Int. J. Syst. Bacteriol. 44, 499-510. https://doi.org/10.1099/00207713-44-3-499
  38. Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S., and Kida, K. 2003. Delftia tsuruhatensis sp. nov., a terephthalateassimilating bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 53, 1479-1483. https://doi.org/10.1099/ijs.0.02285-0
  39. Sorensen, K.B. and Teske, A. 2006. Stratified communities of active Archaea in deep marine subsurface sediments. Appl. Environ. Microbiol. 72, 4596-4603. https://doi.org/10.1128/AEM.00562-06
  40. Spring, S., Schumann, P., and Sproer, C. 2005. Methanogenium frittonii Harris et al. 1996 is a later synonym of Methanoculleus thermophilus (Rivard and Smith 1982) Maestrojuan et al. 1990. Int. J. Syst. Evol. Microbiol. 55, 1097-1099. https://doi.org/10.1099/ijs.0.63607-0
  41. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  42. Vetriani, C., Jannasch, H.W., MacGregor, B.J., Stahl, D.A., and Reysenbach, A.L. 1999. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375-4384.
  43. Yabuuchi, E., Kawamura, Y., Kosako, Y., and Ezaki, T. 1998. Emendation of genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb. nov., Achromobacter piechaudii (Kiredjian et al.) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Ruger and Tan) comb. nov. Microbiol. Immunol. 42, 429-438. https://doi.org/10.1111/j.1348-0421.1998.tb02306.x
  44. Young, R. and Bryant, E. 1992. Catastrophic wave erosion on the southeastern coast of Australia: Impact of the Lanai tsunamis ca. 105 ka? Geology 20, 199-202. https://doi.org/10.1130/0091-7613(1992)020<0199:CWEOTS>2.3.CO;2