A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.
Spatial green's functions for a horizontal magnetic dipole in a parallel-plate waveguide are expressed in an improved closed-form with two-level approximation of the spectral green's functions. The results evaluated by the present closed-from green's function with two-level approximation are compard with those obtained the previous closed-form green's function with one-level approximation. The present results are observed to be more acurate than the previous results over wide frequency range as well as whole spatial range. The combination of the present closed-form green's functions and the moment mehtod may help in analyzing the problem of EMP coupling through an aperture into a parallel-plat waveguide and the microstrip slot antenna with a reflector.
The empirical Green's function method is applied to the foreshock and the mainshock of the 2016 Gyeongju earthquake to simulate strong ground motions of the mainshock and scenario earthquake at seismic stations of seven metropolises in South Korea, respectively. To identify the applicability of the method in advance, the mainshock is simulated, assuming the foreshock as the empirical Green's function. As a result of the simulation, the overall shape, the amplitude of PGA, and the duration and response spectra of the simulated seismic waveforms are similar with those of the observed seismic waveforms. Based on this result, a scenario earthquake on the causative fault of Gyeongju earthquake with a moment magnitude 6.5 is simulated, assuming that the mainshock serves as the empirical Green's function. As a result, the amplitude of PGA and the duration of simulated seismic waveforms are significantly increased and extended, and the spectral amplitude of the low frequency band is relatively increased compared with that of the high frequency band. If the empirical Green's function method is applied to several recent well-recorded moderate earthquakes, the simulated seismic waveforms can be used as not only input data for developing ground motion prediction equations, but also input data for creating the design response spectra of major facilities in South Korea.
파수 영역(k-domain)에서 웨이블릿 변환 개념을 적용한 그린 함수 표현법은 적분 방정식에 활용할 때 전자파 해석의 고속화 계산에 사용할 수 있다. 그 표현 식은 기존의 표현에 비해서 매우 간결하기 때문에 전자파 해석의 방사 적분 계산 시간을 줄이는데 효과적으로 사용될 수 있다. 그린 함수의 이산 웨이블릿 개념을 이용한 수학적인 표현 식을 유도하고 그 특성에 대하여 설명하고자 한다.
유전체기판 위에 놓여있는 안테나를 엄밀히 해석하기 위해서는 파원의 위치를 따른 각 매질에서의 Green함수를 도출하여야한다. 그런데 이와 같은 Green함수는 Sommerfeld적분식으로 표현되기 때문에 적분의 수렴성이 좋지 않아서 수치계산시간이 길어지는 등 곤란한 점이 많다. 본 논문는 접지면이 없는 유전체 슬라브에 위치한 안테나를 해석함에 필요한 3층매질 Green함수를 도출하고, 파수공간에서의 Sommerfeld적분의 수렴성을 개선하는 방법으로 피적분함수로부터 수렴이 늦는 부분을 해석적으로 해결하는 Extraction법을 적용하여 수치계산시간을 단축하였다. 또한 파수공간의 무한적분을 함에 있어 적분로상에 존재하는 표면파 모드를 분석하고 이를 처리하는 방법을 제안 한다.
Journal of the Korean Data and Information Science Society
/
제14권4호
/
pp.975-982
/
2003
In this paper we considered the problem of estimating the bivariate survival distribution of the random vector (X, Y) when Y may be subject to random censoring but X is always uncensored. Adapting conditional Koziol-Green model, simplified estimator for bivariate survival function is proposed. We perform simulation to compare the proposed estimator with popular estimators and discussed the performance of it.
Using the axial Green's function method for Steady Stokes flows, we introduce a new pressure correction formula to satisfy the incompressibility condition, in which the pressure is related to the integral of the second order derivatives of the velocity. Based on this formula, we propose the iterative method for solving the Stokes flows in complicated domains. Even if the domain is complex, this method maintains the second order of convergence for the velocity.
학부생들이 쉽게 사용할 수 있는 기법인 반복 그린 함수 방법(IGFM)을 이용하여 복잡한 전자파 도파관스텁 구조를 이론적으로 엄밀하게 해석한다. lGFM은 그린 함수 접근법과 영역 반복법을 이용한다. IGFM의 간단한 공식화를 위해 단순한 수학 방정식만을 사용한 물리적인 반복 메커니즘을 이용한다. 전형적인 전자파 도파관 구조인 평행판 E평면 T접합 스텁에 대한 산란 특성을 IGFM 관점에서 이론적으로 공식화한다. 수치해석 결과를 주파수에 대한 반사와 투과 전력 관점에서 보인다.
An analytical solution procedure for the dynamic response of beams with variable properties is developed by using an asymptotic solution and the Green's function. This asymptotic closed form solution is derived for the transverse vibration of beams under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is still found to be very accurate even in the case of large variation, such as step change in cross-section, mass, and tension. Therefore, this derived asymptotic closed form solution and the Green's function can be easily applied to find dynamic responses for various kind of beam vibration problems.
The elastic theory of beams is fundamental in engineering of design and structure. In this study, we construct Green's function for inhomogeneous fourth-order differential operators subjected to associated constraints that arises in dealing with dynamic problems in the Rayleigh beam. We obtain solutions for homogeneous and completely inhomogeneous beam problems using Green's function. This enables us to consider rotational influences in determining the eigenfrequency of beam vibrations. Additionally, we investigate the dynamic vibration model of inhomogeneous beams incorporating rotational effects. The eigenvalues of Rayleigh beams, including first-order correction terms, are also computed and displayed in tabular forms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.