Acknowledgement
The authors are grateful to (AS-SMS) Government College University, Lahore, Pakistan for supporting the research.
References
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Bakalah, E.S., Zaman, F.D. and Saleh, K. (2018), "Linear and nonlinear vibrations of inhomogeneous Euler Bernoulli beam", Coupled Syst. Mech., 7(5), 635-647. https://doi.org/10.12989/csm.2018.7.5.635.
- Cheng, Z.Q. and Batra, R. C. (2000), "Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates", J. Sound Vib., 229(4), 879-895. https://doi.org/10.1006/jsvi.1999.2525.
- Ebrahimi-Mamaghani, A., Sarparast, H. and Rezaei, M. (2020), "On the vibrations of axially graded Rayleigh beams under a moving load", Appl. Math. Model., 84(1), 554-570. https://doi.org/10.1016/j.apm.2020.04.002.
- Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium", Coupled Syst. Mech., 9(2), 125-145. https://doi.org/10.12989/csm.2020.9.2.125.
- Han, S.M., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theories", J. Sound Vib., 225(5), 935-988. https://doi.org/10.1006/jsvi.1999.2257.
- Hong, K.S., Chen, L.Q., Pham, P.T. and Yang, X.D. (2022), Beam Model, Control of Axially Moving Systems, Springer, Singapore.
- Hoskoti, L., Misra, A. and Sucheendran, M.M. (2021), "Modal analysis of a rotating twisted and tapered Rayleigh beam", Arch. Appl. Mech., 91(1), 2535-2567. https://doi.org/10.1007/s00419-021-01902-8.
- Ibrahimbegovic, A. and Nava, R.A.M. (2021), "Heterogeneities and material-scales providing physically based damping to replace Rayleigh damping for any structure size", Coupled Syst. Mech., 10(3), 201-216. https://doi.org/10.12989/csm.2021.10.3.201.
- Ibrahimbegovic, A., Mejia-Nava, R.A., Hajdo, E. and Limnios, N. (2022), "Instability of (heterogeneous) Euler beam: Deterministic vs. stochastic reduced model approach", Coupled Syst. Mech., 11(2), 167-198. https://doi.org/10.12989/csm.2022.11.2.167.
- Jo𝑐̌kovi𝑐́, M., Radenkovi𝑐́, G., Nefovska-Danilovi𝑐́, M. and Baitsch, M. (2019), "Free vibration analysis of spatial Bernoulli-Euler and Rayleigh curved beams using isogeometric approach", Appl. Math. Model., 71(1), 152-172. https://doi.org/10.1016/j.apm.2019.02.002.
- Kato, T. (2013), Perturbation Theory for Linear Operators, Science & Business Media, Springer, New-York.
- Lata, P. and Himanshi (2022), "Effect of rotation on Stoneley waves in orthotropic magneto-thermoela- stic media", Wind Struct., 35(6), 395-403. https://doi.org/10.12989/was.2022.35.6.395.
- Logan, J.D. (2013), Applied Mathematics, John Wiley & Sons, Hoboken, New Jersey.
- Love, A.E.H. (1892), A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, United Kingdom.
- Molina-Villegas, J.C., Ortega, J.E.B. and Mart'inez, G.M. (2023), "Closed-form solution for non-uniform Euler-Bernoulli beams and frames", Eng. Struct., 292(1). https://doi.org/10.1016/j.engstruct.2023.116381.
- Nieves, M.J. and Movchan, A.B. (2023), "Asymptotic theory of generalised Rayleigh beams and the dynamic coupling", Mechanics of High-Contrast Elastic Solids, 626(1) 173-200. https://doi.org/10.1007/978-3-031-24141-311.
- Olotu, O.T., Gbadeyan, J.A. and Agboola, O.O. (2023), "Free vibration analysis of tapered Rayleigh beams resting on variable two-parameter elastic foundation", Forces in Mech., 12(1). https://doi.org/10.1016/j.finmec.2023.100215.
- Orucoglu, K. (2005), "A new Green function concept for fourth-order differential equations", Electronic J. Differential Equations, 28(1), 1-12. http://ejde.math.txstate.edu.
- Panchore, V. (2022), "Meshless local Petrov-Galerkin method for rotating Rayleigh beam", Struct. Eng. Mech., 81(5), 607-616. https://doi.org/10.1007/s42417-022-00719-1.
- Rellich, F. (1969), Perturbation Theory of Eigenvalue Problems, Gordon and Breach Science Publishers, New-York.
- Rizov, V.I. (2018), "Non-linear longitudinal fracture in a functionally graded beam", Coupled Syst. Mech., 7(4), 441-453. https://doi.org/10.12989/csm.2018.7.4.441.
- Rizov, V.I. (2020), "Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness", Coupled Syst. Mech., 9(4), 381-396. https://doi.org/10.12989/csm.2020.9.4.381.
- Rizov, V.I. (2021), "Delamination analysis of multilayered beams exhibiting creep under torsion", Coupled Syst. Mech., 10(4), 317-331. https://doi.org/10.12989/csm.2021.10.4.317.
- Russillo, A.F. and Failla, G. (2022), "Wave propagation in stress-driven nonlocal Rayleigh beam lattices", Int. J. Mech. Sci., 215(1). https://doi.org/10.1016/j.ijmecsci.2021.106901.
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0.
- Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving Rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586-598. https://doi.org/10.3390/sym12040586.
- Stakgold, I. and Holst, M.J. (2011), Green's Functions and Boundary Value Problems. John Wiley & Sons, Hoboken, New Jersey.
- Teterina, O. A. (2013), "The Green's function method for solutions of fourth order nonlinear boundary value problem", MS Dissertation University of Tennessee, Knoxville, USA.
- Truesdell, C. (1960), "Outline of the history of flexible or elastic bodies to 1788", J. Acoust. Soc. Am., 32(12), 1647-1656. https://doi.org/10.1121/1.1907980.
- Xu, M. and Ma, R. (2017), "On a fourth-order boundary value problem at resonance", J. Function Spaces, 2017(1). https://doi.org/10.1155/2017/2641856.
- Yang, S., Hu, H., Mo, G., Zhang, X., Qin, J., Yin, S. and Zhang, J. (2021), "Dynamic modeling and analysis of an axially moving and spinning Rayleigh beam based on a time-varying element", Appl. Math. Model., 95(1), 409-434. https://doi.org/10.1016/j.apm.2021.01.049.
- Yigit, G., Sahin, A. and Bayram, M. (2016), "Modeling of vibration for functionally graded beams", Open Mathematics, 14(1), 661-672. https://doi.org/10.1515/math-2016-0057