• Title/Summary/Keyword: graphene layer

Search Result 348, Processing Time 0.032 seconds

Simple and Clean Transfer Method for Intrinsic Property of Graphene

  • Choe, Sun-Hyeong;Lee, Jae-Hyeon;;Kim, Byeong-Seong;Choe, Yun-Jeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.659-659
    • /
    • 2013
  • Recently, graphene has been intensively studied due to the fascinating physical, chemical and electrical properties. It shows high carrier mobility, high current density, and high thermal conductivity compare with conventional semiconductor materials even it has single atomic thickness. Especially, since graphene has fantastic electrical properties many researchers are believed that graphene will be replacing Si based technology. In order to realize it, we need to prepare the large and uniform graphene. Chemical vapor deposition (CVD) method is the most promising technique for synthesizing large and uniform graphene. Unfortunately, CVD method requires transfer process from metal catalyst. In transfer process, supporting polymer film (Such as poly (methyl methacrylate)) is widely used for protecting graphene. After transfer process, polymer layer is removed by organic solvents. However, it is impossible to remove it completely. These organic residues on graphene surface induce quality degradation of graphene since it disturbs movement of electrons. Thus, in order to get an intrinsic property of graphene completely remove of the organic residues is the most important. Here, we introduce modified wet graphene transfer method without PMMA. First of all, we grow the graphene from Cu foil using CVD method. And then, we deposited several metal films on graphene for transfer layer instead of PMMA. Finally, we fabricate graphene FET devices. Our approaches show low defect density and non-organic residues in comparison with PMMA coated graphene through Raman spectroscopy, SEM and AFM. In addition, clean graphene FET shows intrinsic electrical characteristic and high carrier mobility.

  • PDF

Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate (그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성)

  • Lee, Su-Hyung;Kim, Jung-Soo;Kang, Nam-Hyun;Jo, Hyung-Ho;Nam, Dae-Guen
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

Chemical Doping of Graphene by Altretamine(2,4,6-Tris [dimethylamino]-1,3,5-Triazine)

  • Park, Sun-Min;Yang, Se-Na;Lim, Hee-Seon;Lee, Han-Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2199-2202
    • /
    • 2011
  • The electronic properties of altretamine(2,4,6-tris [dimethylamino]-1,3,5-triazine) adsorbed on epitaxial graphene (EG) were investigated by core-level photoemission spectroscopy (CLPES) in conjunction with low energy electron diffraction (LEED). We found that altretamine molecule adsorbed onto interface layer (S1) of graphene as we confirm decrement of S1 peak using CLPES and haziness of LEED pattern. Moreover, the measured work function changes verified that increased adsorption of the altretamine on graphene layer showed n-type doping characteristics due to charge transfer from altretamine to graphene through the nitrogens. Two distinct nitrogen bonding feature associated with the N 1s peak was clearly observed in the core-level spectra indicating two different chemical environments.

Synthesis of Graphene Using 3C-SiC Thin Films with Thermal Annealing Conditions (열처리 조건에 따른 3C-SiC 박막을 이용한 그래핀 합성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.385-388
    • /
    • 2012
  • This paper describes the synthesis and characterization of graphene by RTA process. Amorphous 3C-SiC were deposited using APCVD for carbon source and Ni layer were employed for transition layer. Various parameters of the ramping speed, the annealing time and the cooling speed are evaluated for the optimized combination allowed for the reproducible fabrication of graphene using 3C-SiC thin film. For analysis of crystalline Raman spectra was employed. Transferred graphene shows a high IG/ID ratio of 2.73. SEM and TEM images show the optical transparency and 6 carbon network, respectively. Au electrode deposited on the transferred graphene shows linear I-V curve and its resistance is 358 ${\Omega}$.

Graphene Oxide based Metal ion Hybrid Supercapacitor (산화그라핀 및 금속 이온 결합체를 이용한 슈퍼커패시터 특성 연구)

  • Jung, Youngmo;Jun, Seong Chan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • In this paper we are presenting a architecture of Co ion decorated graphene oxide as an electrode for supercapacitor application. Graphene oxide, which is exfoliated by oxidant from graphite, is the material for solving the problem of mass production and coating on the surface of working electrode. The $Co^{2+}$ ions are coated by using layer by layer(LBL) method on graphene oxide foam. The metal ion decorated graphene oxide shows enhanced capacitance performance when tested as supercapacitor electrode, showing the specific capacitance of $827Fg^{-1}$.

Transmission Electron Microscopy Specimen Preparation for Layer-area Graphene by a Direct Transfer Method

  • Cho, Youngji;Yang, Jun-Mo;Lam, Do Van;Lee, Seung-Mo;Kim, Jae-Hyun;Han, Kwan-Young;Chang, Jiho
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.133-137
    • /
    • 2014
  • We suggest a facile transmission electron microscopy (TEM) specimen preparation method for the direct (polymer-free) transfer of layer-area graphene from Cu substrates to a TEM grid. The standard (polymer-based) method and direct transfer method were by TEM, high-resolution TEM, and energy dispersive X-ray spectroscopy (EDS). The folds and crystalline particles were formed in a graphene specimen by the standard method, while the graphene specimen by the direct method with a new etchant solution exhibited clean and full coverage of the graphene surface, which reduced several wet chemical steps and accompanying mechanical stresses and avoided formation of the oxide metal.

Simultaneous growth of graphene and vertically aligned single-walled carbon nanotubes at low temperature by chemical vapor deposition

  • Hong, Suck Won;Kim, Kwang Ho;Jung, Hyun Kyung;Kim, Daesuk;Lee, Hyung Woo
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.154-157
    • /
    • 2012
  • We present the simultaneous growth of single-walled carbon nanotubes and graphene with the optimal conditions of the synthesizing parameters. The dense and vertically aligned SWNTs having the length of over 100 ㎛ was grown by 2 nm-thick Fe catalytic layer. From 650 ℃, the vertically well-grown SWNTs were obtained by increasing the temperature. The severallayered graphene was synthesized with the gas mixing ratio of 15 : 1(H2 : C2H2) at 650 ℃ and higher temperatures. With these optimal conditions, the vertically well-grown SWNTs and the several-layered graphene were synthesized simultaneously. The presence of SWNTs and the layer of graphene were verified by field emission scanning electron microscopy and high resolution transmission electron microscopy. From the result of this simultaneous synthesizing approach, the possibility of one step growth process of CNTs and grapheme could be verified.

High-energy Proton Irradiated Few Layer Graphene Devices (고에너지 양성자에 의해 결함을 증가시킨 그래핀 소자의 전기적 특성 변화 연구)

  • Kim, Hong-Yeol;Kim, Ji-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.297-300
    • /
    • 2011
  • High energy proton irradiations were performed on graphene devices to increase the number of defects intentionally. Proton energy and fluence were 6 MeV and $5{\times}10^{15}\;cm^{-2}$, respectively. The defects in few layer graphene layer created by proton irradiations captured oxygen molecules that acted as p-type dopants. After the vacuum annealing, hole mobility was enhanced by the recovery of the defects and the desorption of the oxygen molecules. However, the drain current decreased after vacuum annealing due to the removal of the dopant molecules.

Raman spectroscopy study on the reactions of UV-generated oxygen atoms with single-layer graphene on SiO2/Si substrates

  • Ahn, Gwang-Hyun;Kim, Hye-Ri;Hong, Byung-Hee;Ryu, Sun-Min
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.34-38
    • /
    • 2012
  • Successful application of graphene requires development of various tools for its chemical modification. In this paper, we present a Raman spectroscopic investigation of the effects of UV light on single layer graphene with and without the presence of $O_2$ molecules. The UV emission from a low pressure Hg lamp photolyzes $O_2$ molecules into O atoms, which are known to form epoxy on the basal plane of graphene. The resulting surface epoxy groups were identified by the disorder-related Raman D band. It was also found that adhesive residues present in the graphene samples prepared by micro-mechanical exfoliation using adhesive tape severely interfere with the O atom reaction with graphene. The UV-induced reaction was also successfully applied to chemical vapor deposition-grown graphene. Since the current method can be readily carried out in ambient air only with UV light, it will be useful in modifying the surfaces of graphene and related materials.

The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.647-657
    • /
    • 2018
  • Geometric imperfections may be created during the production process or setting borders of single-layer graphene sheets (SLGSs). Vacancy defects are an instance of geometric imperfection, so investigating the effect of these vacancies on the mechanical properties of single-layer graphene is extremely important. Since very few studies have been conducted on the structure of imperfect graphene (with the vacancy defect) as an anisotropic structure, further study of this defective structure seems imperative. Due to the vacancy defects and for the proper assessment of mechanical properties, the graphene structure should be considered anisotropic in certain states. The present study investigates the effects of site and size of vacancy defects on the mechanical properties of graphene as an anisotropic structure using the lekhnitskii interaction coefficients and Molecular Dynamic approach. The effect of temperature on the severity of the SLGS becoming anisotropic is also investigated in this study. The results reveal that the amount of temperature has a big effect on the severity of the structure getting anisotropic even for a graphene without any defects. The effect of aspect ratio, temperature and also size and site of vacancy defects on the material properties of the graphene are studied in this research work. According to the present study, using material properties of flawless graphene for imperfect structure can lead to inaccurate results.