Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.1.034

Raman spectroscopy study on the reactions of UV-generated oxygen atoms with single-layer graphene on SiO2/Si substrates  

Ahn, Gwang-Hyun (Department of Applied Chemistry, Kyung Hee University)
Kim, Hye-Ri (Department of Chemistry, Sungkyunkwan University)
Hong, Byung-Hee (Department of Chemistry, Sungkyunkwan University)
Ryu, Sun-Min (Department of Applied Chemistry, Kyung Hee University)
Publication Information
Carbon letters / v.13, no.1, 2012 , pp. 34-38 More about this Journal
Abstract
Successful application of graphene requires development of various tools for its chemical modification. In this paper, we present a Raman spectroscopic investigation of the effects of UV light on single layer graphene with and without the presence of $O_2$ molecules. The UV emission from a low pressure Hg lamp photolyzes $O_2$ molecules into O atoms, which are known to form epoxy on the basal plane of graphene. The resulting surface epoxy groups were identified by the disorder-related Raman D band. It was also found that adhesive residues present in the graphene samples prepared by micro-mechanical exfoliation using adhesive tape severely interfere with the O atom reaction with graphene. The UV-induced reaction was also successfully applied to chemical vapor deposition-grown graphene. Since the current method can be readily carried out in ambient air only with UV light, it will be useful in modifying the surfaces of graphene and related materials.
Keywords
graphene; Raman spectroscopy; oxygen; UV light; oxidation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sharma R, Baik JH, Perera CJ, Strano MS. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett, 10, 398 (2010). http://dx.doi.org/10.1021/jp065980.   DOI
2 Lee WH, Park J, Sim SH, Jo SB, Kim KS, Hong BH, Cho K. Transparent flexible organic transistors based on monolayer graphene electrodes on plastic. Adv Mater, 23, 1752 (2011). http://dx.doi.org/10.1002/adma.201004099.   DOI   ScienceOn
3 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245.   DOI   ScienceOn
4 Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, De Heer WA, Haddon RC. Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J Am Chem Soc, 131, 1336 (2009). http://dx.doi.org/10.1021/ja8057327.   DOI   ScienceOn
5 Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). http://dx.doi.org/c.   DOI   ScienceOn
6 Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE. Photochemical reactivity of graphene. J Am Chem Soc, 131, 17099 (2009). http://dx.doi.org/10.1021/ja9043906.   DOI   ScienceOn
7 Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). http://dx.doi.org/10.1016/j.ssc.2007.03.052.   DOI   ScienceOn
8 Song J, Ko TY, Ryu S. Raman spectroscopy study of annealinginduced effects on graphene prepared by micromechanical exfoliation. Bull Korean Chem Soc, 31, 2679 (2010). http://dx.doi.org/10.5012/bkcs.2010.31.9.2679.   DOI   ScienceOn
9 Okabe H. Photochemistry of Small Molecules, Wiley, New York (1978).
10 Reader J, Sansonetti CJ, Bridges JM. Irradiances of spectral lines in mercury pencil lamps. Appl Opt, 35, 78 (1996).   DOI
11 Barinov A, Malcioglu OB, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M. Initial stages of oxidation on graphitic surfaces: photoemission study and density functional theory calculations. J Phys Chem C, 113, 9009 (2009). http://dx.doi.org/10.1021/jp902051d.   DOI   ScienceOn
12 Jiang DE, Sumpter BG, Dai S. How do aryl groups attach to a graphene sheet? J Phys Chem B, 110, 23628 (2006). http://dx.doi.org/10.1021/jp065980.   DOI   ScienceOn
13 Wakabayashi K, Pierre C, Diking DA, Ruoff RS, Ramanathan T, Catherine Brinson L, Torkelson JM. Polymer--graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules, 41, 1905 (2008). http://dx.doi.org/10.1021/ma071687b.   DOI   ScienceOn
14 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nature Mater, 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967.   DOI   ScienceOn
15 Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC. Raman fingerprint of charged impurities in graphene. Appl Phys Lett, 91, 233108 (2007). http://dx.doi.org/10.1063/1.2818692.   DOI   ScienceOn
16 Ryu S, Liu L, Berciaud S, Yu YJ, Liu H, Kim P, Flynn GW, Brus LE. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett, 10, 4944 (2010). http://dx.doi.org/10.1021/nl1029607.   DOI   ScienceOn
17 Wallace PR. The band theory of graphite. Phys Rev, 71, 622 (1947). http://dx.doi.org/10.1103/PhysRev.71.622.   DOI
18 Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science, 323, 610 (2009). http://dx.doi.org/10.1126/science.1167130.   DOI   ScienceOn
19 Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW. Graphene oxidation: thickness- dependent etching and strong chemical doping. Nano Lett, 8, 1965 (2008). http://dx.doi.org/10.1021/nl0808684.   DOI   ScienceOn
20 Ryu S, Han MY, Maultzsch J, Heinz TF, Kim P, Steigerwald ML, Brus LE. Reversible basal plane hydrogenation of graphene. Nano Lett, 8, 4597 (2008). http://dx.doi.org/10.1021/nl802940s.   DOI   ScienceOn
21 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI   ScienceOn
22 Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A, 102, 10451 (2005). http://dx.doi.org/10.1073/pnas.0502848102.   DOI   ScienceOn
23 Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol, 3, 270 (2008). http://dx.doi.org/10.1038/nnano.2008.83.   DOI   ScienceOn
24 Han MY, Ozyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 98, 206805 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.206805.   DOI   ScienceOn
25 Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnol, 5, 574 (2010). http://dx.doi.org/10.1038/nnano.2010.132.   DOI
26 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.   DOI   ScienceOn