DOI QR코드

DOI QR Code

Transmission Electron Microscopy Specimen Preparation for Layer-area Graphene by a Direct Transfer Method

  • Cho, Youngji (Department of Measurement & Analysis, National NanoFab Center) ;
  • Yang, Jun-Mo (Department of Measurement & Analysis, National NanoFab Center) ;
  • Lam, Do Van (Nano Mechatronics, University of Science and Technology (UST)) ;
  • Lee, Seung-Mo (Nano Mechatronics, University of Science and Technology (UST)) ;
  • Kim, Jae-Hyun (Nano Mechatronics, University of Science and Technology (UST)) ;
  • Han, Kwan-Young (OLED Module Team, Samsung Display Co., Ltd.) ;
  • Chang, Jiho (Department of Applied Science, Korea Maritime and Ocean University)
  • Received : 2014.11.05
  • Accepted : 2014.12.29
  • Published : 2014.12.30

Abstract

We suggest a facile transmission electron microscopy (TEM) specimen preparation method for the direct (polymer-free) transfer of layer-area graphene from Cu substrates to a TEM grid. The standard (polymer-based) method and direct transfer method were by TEM, high-resolution TEM, and energy dispersive X-ray spectroscopy (EDS). The folds and crystalline particles were formed in a graphene specimen by the standard method, while the graphene specimen by the direct method with a new etchant solution exhibited clean and full coverage of the graphene surface, which reduced several wet chemical steps and accompanying mechanical stresses and avoided formation of the oxide metal.

Keywords

References

  1. Brar V W, Zhang Y, Yayon Y, Ohta T, McChesney J L, Bostwick A, Rotenberg E, Horn K, and Crommie M F (2007) Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl. Phys. Lett. 91, 122102. https://doi.org/10.1063/1.2771084
  2. Dedkov Y S, Fonin M, Rüdiger U, and Rashba C L (2008) Effect in the graphene/Ni(111) gystem. Phys. Rev. Lett. 100, 107602. https://doi.org/10.1103/PhysRevLett.100.107602
  3. Geim A K (2009) Graphene: status and prospects. Science 324, 1530-1534. https://doi.org/10.1126/science.1158877
  4. Geim A K and Novoselov K S (2007) The rise of graphene. Nature Mat. 6, 183. https://doi.org/10.1038/nmat1849
  5. Han S A, Choi I S, An H S, Lee H, Yong H D, Lee S, Jung J, Lee N S, and Seo Y (2011) Ridge formation and removal via annealing in exfoliated graphene. J. Nanosci. Nanotechnol. 11, 5949-5954. https://doi.org/10.1166/jnn.2011.4434
  6. Huang P Y, Ruiz-Vargas C S, Van Der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, and Muller D A (2011) Grains and grain boundaries in singlelayer graphene atomic patchwork quilts. Nature 469, 389. https://doi.org/10.1038/nature09718
  7. Li X, Cai W, An J, Kim S, Nah S, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee K, Colombo L, and Ruoff R S (2009) Large-area uniform graphene films on copper foils. Science 324, 1312. https://doi.org/10.1126/science.1171245
  8. Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, and Kaiser U (2013) Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 110, 239902. https://doi.org/10.1103/PhysRevLett.110.239902
  9. Qi Y, Rhim S H, Sun G F, Weinert M, and Li L (2010) Epitaxial graphene on SiC(0001): more than just honeycombs. Phys. Rev. Lett. 105, 085502. https://doi.org/10.1103/PhysRevLett.105.085502
  10. Regan W, Alem N, Alemán B, Geng B, Girit Ç, Maserati L, Wang F, Crommie M, and Zettl A (2010) A direct transfer of layer-area graphene. Appl. Phys. Lett. 96, 113102. https://doi.org/10.1063/1.3337091
  11. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, and Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30. https://doi.org/10.1021/nl801827v
  12. Zhang Y, Small J P, Pontius W V, and Kim P (2005) Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86, 073104. https://doi.org/10.1063/1.1862334