Browse > Article
http://dx.doi.org/10.9729/AM.2014.44.4.133

Transmission Electron Microscopy Specimen Preparation for Layer-area Graphene by a Direct Transfer Method  

Cho, Youngji (Department of Measurement & Analysis, National NanoFab Center)
Yang, Jun-Mo (Department of Measurement & Analysis, National NanoFab Center)
Lam, Do Van (Nano Mechatronics, University of Science and Technology (UST))
Lee, Seung-Mo (Nano Mechatronics, University of Science and Technology (UST))
Kim, Jae-Hyun (Nano Mechatronics, University of Science and Technology (UST))
Han, Kwan-Young (OLED Module Team, Samsung Display Co., Ltd.)
Chang, Jiho (Department of Applied Science, Korea Maritime and Ocean University)
Publication Information
Applied Microscopy / v.44, no.4, 2014 , pp. 133-137 More about this Journal
Abstract
We suggest a facile transmission electron microscopy (TEM) specimen preparation method for the direct (polymer-free) transfer of layer-area graphene from Cu substrates to a TEM grid. The standard (polymer-based) method and direct transfer method were by TEM, high-resolution TEM, and energy dispersive X-ray spectroscopy (EDS). The folds and crystalline particles were formed in a graphene specimen by the standard method, while the graphene specimen by the direct method with a new etchant solution exhibited clean and full coverage of the graphene surface, which reduced several wet chemical steps and accompanying mechanical stresses and avoided formation of the oxide metal.
Keywords
Graphene; Transmission electron microscopy; Specimen preparation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brar V W, Zhang Y, Yayon Y, Ohta T, McChesney J L, Bostwick A, Rotenberg E, Horn K, and Crommie M F (2007) Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl. Phys. Lett. 91, 122102.   DOI
2 Dedkov Y S, Fonin M, Rüdiger U, and Rashba C L (2008) Effect in the graphene/Ni(111) gystem. Phys. Rev. Lett. 100, 107602.   DOI
3 Geim A K (2009) Graphene: status and prospects. Science 324, 1530-1534.   DOI   ScienceOn
4 Han S A, Choi I S, An H S, Lee H, Yong H D, Lee S, Jung J, Lee N S, and Seo Y (2011) Ridge formation and removal via annealing in exfoliated graphene. J. Nanosci. Nanotechnol. 11, 5949-5954.   DOI
5 Huang P Y, Ruiz-Vargas C S, Van Der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, and Muller D A (2011) Grains and grain boundaries in singlelayer graphene atomic patchwork quilts. Nature 469, 389.   DOI   ScienceOn
6 Li X, Cai W, An J, Kim S, Nah S, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee K, Colombo L, and Ruoff R S (2009) Large-area uniform graphene films on copper foils. Science 324, 1312.   DOI   ScienceOn
7 Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, and Kaiser U (2013) Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 110, 239902.   DOI
8 Zhang Y, Small J P, Pontius W V, and Kim P (2005) Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86, 073104.   DOI   ScienceOn
9 Qi Y, Rhim S H, Sun G F, Weinert M, and Li L (2010) Epitaxial graphene on SiC(0001): more than just honeycombs. Phys. Rev. Lett. 105, 085502.   DOI
10 Regan W, Alem N, Alemán B, Geng B, Girit Ç, Maserati L, Wang F, Crommie M, and Zettl A (2010) A direct transfer of layer-area graphene. Appl. Phys. Lett. 96, 113102.   DOI   ScienceOn
11 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, and Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30.   DOI   ScienceOn
12 Geim A K and Novoselov K S (2007) The rise of graphene. Nature Mat. 6, 183.   DOI   ScienceOn