• Title/Summary/Keyword: gradient technique

Search Result 709, Processing Time 0.027 seconds

Analysis of Eddy Current Effect in Magnetic Resonance Imaging Using the Finite Element Method (유한요소법에 의한 자기공명영상시스템에서의 와전류 영향 분석)

  • Lee, Jeong-Han;Gang, Hyeon-Su;Jo, Min-Hyeong;Mun, Chi-Ung;Lee, Gang-Seok;Lee, Su-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 1999
  • Eddy current in MRI systems degrades gradient field linearity and distorts gradient waveform. When the waveform distortion is spatially variant, it is very difficult to perform special imaging techniques such as the echo planar imaging technique or the fast spin echo imaging technique. In this study, we have developed a new technique to estimate the distorted gradient waveforms at any points inside the imaging region using the finite element method. After obtaining the eddy-current-effect transfer function, which represents magnitude and phase characteristics of the gradient field at a particular point, we have used the transfer function to estimate the actual gradient waveforms at the point. To verify the proposed technique, we have compared the estimated gradient waveforms with the measured ones.

  • PDF

A New Spatial Localization Technique Using High-Order Surface Gradient Coils (SGC) (고차표면 경사자계코일을 이용한 새로운 공간 선택 방법)

  • Lee, J.K.;Yang, Y.J.;Jeong, S.T.;Yi, Y.;Cho, Z.H.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.43-46
    • /
    • 1994
  • A new spatial localization technique using high-order surface gradient coil (SGC) is proposed. Although the Spatial Selection with High-Order gradient (SHOT) can provide a 2-D selection with only one selective RF pulse, the high-order gradient produced by cylindrical-shape coils has not been clinically useful for clinical systems due to the large minimum selection size caused by the limited radial gradient intensity. However, by using the proposed high-order SGCs located near the imaging region, the size of volume selection can be reduced to a clinically useful 1-4 cm in diameter by applying stronger radial gradient with much less gradient driving power. A 40 cm-by-40 cm $r^{2}$ SGC has been designed and constructed, and phantom and volunteer studies have been performed. Experimental results using spatially localized MRI show good agreement to the theoretically predicted behavior.

  • PDF

A study on the Effective Utilization of Temperature Logging Data for Calculating Geothermal Gradient (지온경사 산출을 위한 효율적인 온도검층자료 이용방법 연구)

  • 김형찬
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.503-517
    • /
    • 1999
  • The purpose of this study is to verfify a more effecive techique for calculating geothermal gradient. this study examines 370 data of temperature-logging having been collected since 1985. The daya are divided into three different grades grades according to the type of temperature-depth plots: 204 data show typical linear gradient (Grade A); 126 data do not explicitily show the gradient becase of various external effects such as water flow (Grade B); and the rest 40 data do not show the gradient at all (Grade D). The new technique for calculating geothermal gradient is to be required to use Greade-B data more effctiviely. This new technique includes (1) calculating the independer depth of atmospheric temperature in the earth; (2) drawing a distribution map of subsurface tempurature by using the distribution map of subsurface temperature by using Grade-A data at the independent depth; and (3) recalculating geothermal gradient of Grade-B data by using the distrbution map of subsurface temperature, borehole depth, and bottom temperature of Grade-B data by using the distribution map of subsurface temperature, borehole depth, and bottom temperature of Grade-B data. As a result, 330 data-both Grade-A and Grade-B data--can be used to draw a distribution map of hot spradient. The map clearly distinguishes anomaly areas, and helps interpret their relations to the distribution of hot springs, geology, geological structures, and geophysical anomaly areas. These new results reveal that the average of geothermal in south Korea is 25.6$^{\circ}C$/km, when calculated to the Kriging method.

  • PDF

A CLASS OF NONMONOTONE SPECTRAL MEMORY GRADIENT METHOD

  • Yu, Zhensheng;Zang, Jinsong;Liu, Jingzhao
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • In this paper, we develop a nonmonotone spectral memory gradient method for unconstrained optimization, where the spectral stepsize and a class of memory gradient direction are combined efficiently. The global convergence is obtained by using a nonmonotone line search strategy and the numerical tests are also given to show the efficiency of the proposed algorithm.

THE GRADIENT RECOVERY FOR FINITE VOLUME ELEMENT METHOD ON QUADRILATERAL MESHES

  • Song, Yingwei;Zhang, Tie
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1411-1429
    • /
    • 2016
  • We consider the nite volume element method for elliptic problems using isoparametric bilinear elements on quadrilateral meshes. A gradient recovery method is presented by using the patch interpolation technique. Based on some superclose estimates, we prove that the recovered gradient $R({\nabla}u_h)$ possesses the superconvergence: ${\parallel}{\nabla}u-R({\nabla}u_h){\parallel}=O(h^2){\parallel}u{\parallel}_3$. Finally, some numerical examples are provided to illustrate our theoretical analysis.

MR spectroscopy using single-shot RF localization technique (단일 RF 펄스를 사용한 3차원 체적 선택 방법을 이용한 MR 스펙트로 스코피)

  • Rim, C.Y.;Chun, K.W.;Ra, J.B.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.51-54
    • /
    • 1989
  • In last several years, a number of volume localization techniques, such as ISIS, VSE, SPARS and STEAM etc., have been developed for the MR spectroscopy. These localizing techniques, however, require application of several RF pulses for the 3-D volume selection and suffer from T1 and T2 decays due to relatively long RF excitation time. In this paper, we propose a single-shot RF pulse localization technique to achieve the localized 3-D volume selection. This technique combines the cylindrical volume selection technique with a radial gradient coil with single-shot RF pulse and the oscillating selection gradient technique, so thai it minimizes the volume selection time. We report some experimental results obtained with the proposed method which appears promising for 3-D volume imaging and localized spectroscopy.

  • PDF

A correction of synthetic aperture sonar image using the redundant phase center technique and phase gradient autofocus (Redundant phase center 기법과 phase gradient autofocus를 이용한 합성개구소나 영상 보정)

  • Ryue, Jungsoo;Baik, Kyungmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.546-554
    • /
    • 2021
  • In the signal processing of synthetic aperture sonar, it is subject that the platform in which the sensor array is installed moves along the straight line path. In practical operation in underwater, however, the sensor platform will have trajectory disturbances, diverting from the line path. It causes phase errors in measured signals and then produces deteriorated SAS images. In this study, in order to develop towed SAS, as tools to remove the phase errors associated with the trajectory disturbances of the towfish, motion compensation technique using Redundant Phase Center (RPC) and also Phase Gradient Autofocus (PGA) method is investigated. The performances of these two approaches are examined by means of a simulation for SAS system having a sway disturbance.

Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using Ritz technique

  • Ghannadpour, S. Amir M.;Khajeh, Selma
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.393-406
    • /
    • 2022
  • In the present article, functionally graded small-scaled plates based on modified strain gradient theory (MSGT) are studied for analyzing the nonlinear bending and post-buckling responses. Von-Karman's assumptions are applied to incorporate geometric nonlinearity and the first-order shear deformation theory is used to model the plates. Modified strain gradient theory includes three length scale parameters and is reduced to the modified couple stress theory (MCST) and the classical theory (CT) if two or all three length scale parameters become zero, respectively. The Ritz method with Legendre polynomials are used to approximate the unknown displacement fields. The solution is found by the minimization of the total potential energy and the well-known Newton-Raphson technique is used to solve the nonlinear system of equations. In addition, numerical results for the functionally graded small-scaled plates are obtained and the effects of different boundary conditions, material gradient index, thickness to length scale parameter and length to thickness ratio of the plates on nonlinear bending and post-buckling responses are investigated and discussed.

A Unified Gradient Shape on the Slice-Selection Axis for Flow Compensation (스핀에코 펄스 시퀀스의 슬라이스 선택방향에서 혈류 보상을 위한 통일 경사자장법 연구)

  • Pickup, Stephen;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.70-80
    • /
    • 2006
  • Spin echo gradient moment nulling pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. A new technique was introduced for flow compensation that minimized echo time and effectively suppresses unwanted echoes on the slice selection gradient axis in spin echo sequences. A unified gradient shape was used in all orders of flow compensation up to the third order. A dual-purpose gradient was applied for flow compensation and to reduce unwanted artifacts. The sequences were used to generate images of phantoms and/or human brains. This technique was especially good at reducing eddy currents and artifacts related to imperfection of the refocusing pulse. The developed sequences were found to have shorter echo times and better flow compensation in through-plane flow than those of the previous models that were used by other investigators.

  • PDF

AN ACCELERATED DEFLATION TECHNIQUE FOR LARGE SYMMETRIC GENERALIZED EIGENPROBLEMS

  • HYON, YUN-KYONG;JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.99-106
    • /
    • 1999
  • An accelerated optimization technique combined with a stepwise deflation procedure is presented for the efficient evaluation of a few of the smallest eigenvalues and their corresponding eigenvectors of the generalized eigenproblems. The optimization is performed on the Rayleigh quotient of the deflated matrices by the aid of a preconditioned conjugate gradient scheme with the incomplete Cholesky factorization.

  • PDF