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Abstract

An accelerated optimization technique combined with a stepwise de
ation pro-

cedure is presented for the e�cient evaluation of a few of the smallest eigenvalues

and their corresponding eigenvectors of the generalized eigenproblems. The op-

timization is performed on the Rayleigh quotient of the de
ated matrices by the

aid of a preconditioned conjugate gradient scheme with the incomplete Cholesky

factorization.

1. Introduction. In this paper, we shall be concerned with computing a few of the

smallest eigenvalues and their corresponding eigenvectors of the generalized eigenvalue

problem

Ax = �Bx; (1)

where A and B are large sparse symmetric positive de�nite matrices. Such a partial

eigenproblem often arises in many engineering and science applications, e.g., structural

mechanics, hydrodynamics and plasma physics. Due to the large number of applications

of this problem, considerable e�ort has been devoted to the development of e�cient

and reliable methods for solving such a problem. A detailed list of references and a

review of these methods can be found in [3,10].

Recently iterative algorithms based on the optimization of the Rayleigh quotient

have been developed[1,7], and a conjugate gradient(CG) scheme for the optimization

of the Rayleigh quotient has proven a very attractive and promising technique for large

sparse eigenproblems[4,13]. As in the case of a system of linear equations, successful

application of CG method to eigenproblems depends also upon the preconditioning

techniques. In particular incomplete Cholesky(IC) factorization preconditioner turned

out to be a reliable and e�cient tool for the solution to both linear systems and eigen-

problems in a �nite element context[9].

The aim of this papar is to apply IC preconditioning for the CG optimization of

the Rayleigh quotient together with a shifting de
ation technique to evaluate several

of the smallest eigenpairs. The result proved very encouraging and the method rather

cost-e�ective.
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2. Generalized eigenproblem via preconditioned CG Scheme.

2.1. Conjugate gradient scheme. Let A and B be symmetric positive de�nite

matrices of order n. We look for the m smallest eigenvalues

0 < �1 < �2 � �3 � � � � � �m (2)

and for the corresponding eigenvectors z1; z2; � � � ; zm of (1) such that

Azj = �jBzj ; zj
TBzj = 1; j = 1; 2; � � � ;m: (3)

The number m of the desired eigenpairs (�j ; zj) is much smaller than the order n of

the matrices.

We recall that the eigenvectors of (1) are the stationary points of the Rayleigh

quotient

R(x) =
xTAx

xTBx
; (4)

and the minimum of the Rayleigh quotient R(x) corresponding to (1) is equal to �1
and is attained at z1:

min
x6=0

R(x) = �1 =
z1

TAz1

z1TBz1
:

The minimum of R(x) is determined iteratively by CG method. For an iterate x(k) the

corresponding gradient of R(x),

rR(x(k)) = g(k) = g(x(k)) = 2

"
Ax(k) �R(x(k))Bx(k)

x(k)
T
Bx(k)

#
; (5)

is used to �x the direction of descent p(k+1) in whichR(x) is minimized. These directions

of descent are de�ned by

p(1) = �g(0); p(k+1) = �g(k) + �(k)p(k); k = 1; 2; � � � :

Di�erent explicit values for the parameter �(k) exist. Comparison of CG methods for

computing the smallest eigenpair with various forms of �(k) and their asymptotic behav-

iors are discussed in [3]. The expression for �(k), which is given by the A-conjugacy[8],

�(k) =
g(k)

T

g(k)

g(k�1)
T
g(k�1)

;

is commonly used.

The subsequent iterate x(k+1) along p(k+1) through x(k) is written as

x(k+1) = x(k) + �(k+1)p(k+1); k = 0; 1; � � � ; (6)

where �(k+1) is obtained by minimizing R(x(k+1)),

R(x(k+1)) =
x(k)

T

Ax(k) + 2�(k+1)p(k+1)
T

Ax(k) + �(k+1)
2
p(k+1)

T

Ap(k+1)

x(k)
T
Bx(k) + 2�(k+1)p(k+1)

T
Bx(k) + �(k+1)

2
p(k+1)

T
Bp(k+1)

:
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A detailed explanation to get the values for �(k+1) can be found in [7].

2.2. Preconditioned CG scheme. The convergence of the sequence of iterates

x(k) in (6) towards the direction of z1 depends on the condition number of the Hessian

matrix H(x) of R(x),

H(x) =
2

xTBx

h
A�R(x)B � g(x)(Bx)T � (Bx)g(x)T

i

evaluated at z1[9]. Due to the B-orthonormality of z1 and g(z1) = 0, H(z1) = 2(A �
�1B) holds and the norm of H(z1), subordinate to the norms kxkB =

p
xTBx and

kxkB�1 =
p
xTB�1x, is given by

kH(z1)kB;B�1 = sup
x6=0

kH(z1)xkB�1

kxkB
= 2(�n � �1):

Since H(z1) is positive semide�nite, the corresponding condition number is de�ned by

�B;B�1(H(z1)) =
�n � �1
�2 � �1

;

and the condition number of the Hessian matrix can be essentially decreased by the

use of suitable preconditioning techniques[11].

The idea behind the PCG is to apply CG method to the transformed system

~A~x = � ~B~x;

where ~A = C�1AC�1; ~B = C�1BC�1; ~x = Cx; and C is nonsingular symmetric

matrix. By substituting x = C�1~x into (4), we obtain

R(~x) =
~xTC�1AC�1~x

~xTC�1BC�1~x
=

~xT ~A~x

~xT ~B~x
; (7)

where the matrices ~A and ~B are symmetric positive de�nite. The transformation (7)

leaves the stationary values of (4) unchanged, which are eigenvalues of (1), while the

corresponding stationary points are obtained from ~xj = Czj; j = 1; 2; � � � ; n: In fact

the Hessian matrix of R(~x), evaluated at the eigenvector ~x1, is similar to

C�1H(~x1)C = 2(C2)�1(A� �1B) = (C2)�1H(z1):

The matrix M = C2 is called the preconditioner.

There are a number of choices of M , ranging from simple to complicated forms,

among which the incomplete Cholesky decomposition that preserves exactly the nonzero

pattern of A exhibits both e�ciency and robustness[3-6,11]. In our work, the precondi-

tioning matrixM = HHT is used, H being the pointwise incomplete Cholesky factor of

A. The PCG algorithm for solving the smallest eigenpair with implicit preconditioning

is summarized as follows.
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The PCG algorithm for computing the smallest eigenpair

Step 1. Compute the preconditioner M = HHT .

Step 2. Choose an initial guess x(0) 6= 0.

Step 3. Construct the initial gradient direction g(0):

Set p(1) = �g(0) and Mh(0) = g(0):

Step 4. Iterate for k = 0 to NMAX(maximum number of iterations).

Step 5. If k = 0 then set �(k) = 0, otherwise compute

Mh(k) = g(k) and �(k) =
g(k)

T

h(k)

g(k�1)
T
h(k�1)

:

Step 6. Compute p(k+1) = �h(k) + �(k)p(k).

Step 7. Compute �(k+1) by minimizing R(x(k+1))(see [7] for details).

Step 8. Compute x(k+1) = x(k) + �(k+1)p(k+1).

Step 9. Test on convergence.

3. Higher eigenvalues computation. Although the PCG scheme in x2 only

produces the smallest eigenpair of (1), this algorithm can also be used evaluate a few of

the smallest eigenpairs and their corresponding eigenvectors by using a de
ation based

on a partial shift of the spectrum [6,11].

When the �rst r�1 eigenpairs are approximately known, the next eigenpair (�r; zr)

could be obtained by minimizing the Rayleigh quotient R(x) of the modi�ed eigenprob-

lem Arx = �Bx, where Ar is de�ned by

Ar = A+
r�1X
i=1

�i(Bzi)(Bzi)
T ; (8)

with �i is the shift that satis�es �i > 0 and �i + �i > �r; i = 1; 2; � � � ; r � 1: More

details and the numerical stability of the de
ation process (8) are reported in [11].

In the previous section, we chose the preconditionerM as an approximate represen-

tation of A. Thus, M also has to be modi�ed in the same manner as Ar. The modi�ed

preconditioner Mr of Ar is de�ned by

Mr =M +
r�1X
i=1

�i(Bzi)(Bzi)
T :

The replacement of M withMr in step 5 of the PCG scheme in x2 requires the solution
of the linear equation (

M +
r�1X
i=1

�i(Bzi)(Bzi)
T

)
h = g: (9)

To solve for h in (9), a Sherman-Morrison formula is applied. By assuming that h0 =

M�1g can be easily solved, the algorithm for computing (9) is given as follows.
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Algorithm for computing h =M�1
r g

Step 1. Compute h0 =M�1g.

Step 2. Iteratefori = 1 to r � 1.

Step 3. Compute hi = hi�1 �
�iM

�1(Bzi)(Bzi)
Thi�1

1 + �i(Bzi)TM�1(Bzi)
:

A proper choice of the shift �i can reduce the number of iterations signi�cantly in

the proposed method. Experience indicates that too large shifts �i of the computed

eigenvalues have some negative in
uence on the convergence, so that they must be

chosen in a reasonable way, taking into account the distribution of the eigenvalues.

A possible strategy de�nes the �i to be a multiple of the lastly computed eigenvalue

�r�1[11], where the factor decreases from a starting value to a limiting value larger than

one with increasing index r. However, a potential wrong choice with �r�1 + �r�1 < �r
can easily be discovered in the de
ation of using the multiple shift because the resulting

minimal value of the Rayleigh quotient will be equal to �r�1+�r�1. A bad choice with

�r < �r�1 + �r�1 < �r+1 results in a slow convergence. We recall that the Rayleigh

quotient (4) for an arbitrary vector x provides an overestimate and an underestimate of

the spectral bounds �n and �1, respectively. So the maximal value of (4) is equal to �n
and is obtained by using opposite direction of the descent g(x(k)) in (5). By assuming

that �n is easily computed, a possible choice of the shift �i can be de�ned by

�i = �� �i; i = 1; � � � ; r � 1; where � =
�1 + �n

2
: (10)

In the numerical models of large hydrodynamic systems or mechanical structures �1 �
�n, the eigenvalues exhibit to some extent a uniform distribution between the extreme

bound and the separation is usually not to bad. Thus the way of choosing �i in (10)

is quite e�ective. Actually the numerical results given in the next section show that,

while the de
ation with the multiple shifting fails to converge, the de
ation with the

shifting in (10) yields accurate results in only a few number of steps.

4. Numerical experiments. The performance of the de
ation-PCG scheme

presented in this paper has been analyzed for the computation of the m smallest eigen-

pairs of two sparse symmetric positive de�nite matrices. Example 1. The dynamic

modelling of structure is considered. The matrix A, the sti�ness matrix�, and the

matrix B, the mass matrixy, are the result of applying \static condensation" to the

oil ring model. Static condensation can be applied in cases where the mass matrix is

singular to reduce the problem order while preserving the spectrum. However, the re-

duced sti�ness matrix is usually dense, which is the case here. Example 2. The problem

of the vibration string of length 1, �xed at both ends, is considered. The variational

formulation of the Rayleigh quotient takes the form

R(x) =

R 1
0 (dx=dt)

2dtR 1
0 x(t)

2dt
: (11)

�These matrices can be obtained from the Matrix Market under the set BCSSTRUC1;

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
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The two integrals are approximated using quadratic spline functions with a mesh step

h = 1
513

and 512 interior points. Equation (11) takes the form

R(x) � c

h2
xTAx

xTBx

with c = 18 and

A =

2
666666666664

8 �1 �1

�1 6 �2 �1

�1 �2 6 �2 �1

. . .
. . .

. . .

�1 �2 6 �2 �1

�1 �2 6 �1

�1 �1 8

3
777777777775
; B =

2
666666666664

40 25 1

25 66 26 1

1 26 66 26 1

. . .
. . .

. . .

1 26 66 26 1

1 26 66 1

1 25 40

3
777777777775
:

The convergence criterion is set as

k�(k)Bx(k) �Ax(k)k
kAx(k)k < �;

� is the convergence tolerance for the required eigensolutions.

Due to the comparison of the performance of the CG scheme and the PCG-IC

scheme for computing the smallest eigenvalue have been reported in [3-4,11], these

two schemes are not described in this study. Also the approach with the initial guess

obtained from a coarse mesh[2], which is potentially attractive, is not considered.

Figure 1 compares the performance of de
ation-PCG with the multiple shift[11](DPCGM)

and de
ation-PCG with the shift in (10)(DPCGB) for the computation of the leftmost

m eigenpairs of the matrices in Examples 1{2. Figure 1 emphasizes the improved

performance of DPCGB. The DPCGB iterations needed to compute the leftmost m

eigenpairs are fewer than the DPCGM iterations.

Fig. 1.Average convergence pro�les of DPCGB and DPCGM for Examles 1 and 2

Table 1 compares the CPU times required by both schemes. The average numbers

of DPCGB iterations and DPCGM iterations performed to satisfy the exit criterion

with � = 10�6 are also given.
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Table 1.CPU time and the average iterations of DPCGB and DPCGM

DPCGB DPCGM

Examples �i time(sec.) iter. time(sec.) iter.

4.3265013e+01 7.8000e{02 13 7.8000e{02 13

n = 66 4.3849748e+01 7.8000e{02 11 9.4000e{02 15

m = 5 4.9453708e+01 3.1000e{02 6 7.8000e{02 10

5.6567577e+02 1.5600e{01 18 1.4840e{00 148

5.7065179e+02 6.3000e{02 8 2.1900e{01 17

8.9173756e+00 6.9380e+00 8 6.6410e+00 8

n = 512 3.5669502e+01 1.0578e+01 11 2.8906e+01 29

m = 10 8.0256381e+01 1.3844e+01 13 1.8828e+01 16

1.4267801e+02 1.6297e+01 14 5.6250e+01 42

2.2293439e+02 1.9000e+01 15 3.8109e+01 25

3.2102553e+02 2.1906e+01 16 7.8392e+01 46

4.3695141e+02 2.5031e+01 17 4.8796e+01 26

5.7071205e+02 2.8359e+01 18 5.5844e+01 28

7.2230744e+02 3.1891e+01 19 5.9110e+01 28

8.9173758e+02 3.3859e+01 19 5.3236e+02 230

5. Conclusions. From the above numerical experiments it appears that the

de
ation-PCG scheme DPCGB is quite robust and the number of iterations required in

the evaluation of each eigenpair does not increase signi�cantly when the order n becomes

large. In the present paper a few of the smallest eigenpairs have been computed, but

the scheme can be used e�ciently for the assessment of a large number of eigenpairs.

Although the DPCGB is numerically superior to the DPCGM, in case of patholog-

ical eigenvalue distributions every rule for de�ning the shifts may happen to fail. In a

series of papers [10,5], Gambolati. et al. have developed schemes which can consider-

ably reduce this di�culty even though they are not easy to implement practically in a

computer code and their numerical behavior has been explored mainly with small and

unrealistic sample problems. Comparisons of these schemes and DPCGM with various

�nite element examples will be reported in detail elsewhere [6].

Acknowledgment. This work was partially supported by the Hanyang University.

REFERENCES

[1] W.W. Bradbury and R. Fletcher, New iterative methods for the solution of

the eigenproblem, Numer. Math., 9(1966), pp. 259{267.

[2] Y. Cho and Y. K. Yong, A multi-mesh, preconditioned conjugate gradient solver

for eigenvalue problems in �nite element models, Comput. Struct., 58(1996), pp.

575{583.

[3] Y. T. Feng and D. R. J. Owen, Conjugate gradient methods for solving the



106 Yun-Kyong Hyon and Ho-Jong Jang

smallest eigenpair of large symmetric eigenvalue problems, Internat. J. Numer.

Methods Engrg., 39(1996), pp. 2209{2229.

[4] G. Gambolati and M. Putti , A comparison of Lanczos and optimization meth-

ods in the partial solution of sparse symmetric eigenproblems, Internat. J. Numer.

Methods Engrg., 37(1994), pp. 605{621.

[5] G. Gambolati, F. Sartoretto, and P. Florian, An orthogonal accelerated

de
ation technique for large symmetric eigenproblems , Comput. Methods Appl.

Mech. Engrg., 94(1992), pp. 13{23.

[6] Y. Hyon and H. Jang, A de
ated preconditioned conjugate gradient methods for

generalized eigenproblems, Preprint.

[7] Longsine, D.E. and McCormick, S.F., Simultaneous Rayleigh quotient mini-

mization methods for Ax = �Bx, Lin.Alg. Appl., 34(1980), pp. 195{234.

[8] E. Polak, Computational Methods in Optimization: A Uni�ed Approach, Aca-

demic Press, New York(1971).

[9] A. Ruhe, Computation of eigenvalues and eigenvectors, in Sparse Matrix Tech-

niques,V. A. Baker, ed., Springer-Verlag, Berlin(1977), pp. 130{184.

[10] F. Sartoretto, G. Pini and G. Gambolati, Accelerated simultaneous iter-

ations for large �nite element eigenproblems, J. Comput. Phys., 81(1989), pp.

53{69.

[11] H. R. Schwartz, Eigenvalue problems and preconditioning, ISNM, 96(1991), pp.

191{208.

Department of Mathematics

Hanyang University,

Seoul 133-791, Korea

hjang@fermat.hanyang.ac.kr


