• Title/Summary/Keyword: glutathione transferase

Search Result 884, Processing Time 0.045 seconds

Increased Hypermethylation of Glutathione S-Transferase P1, DNA-Binding Protein Inhibitor, Death Associated Protein Kinase and Paired Box Protein-5 Genes in Triple-Negative Breast Cancer Saudi Females

  • Hafez, Mohamed M.;Al-Shabanah, Othman A.;Al-Rejaie, Salim S.;Al-Harbi, Naif O.;Hassan, Zeinab K.;Alsheikh, Abdulmalik;Theyab, Abdurrahman I. Al;Aldelemy, Meshan L.;Sayed-Ahmed, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.541-549
    • /
    • 2015
  • Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with higher metastatic rate and both local and systemic recurrence compared to non-TNBC. The generation of reactive oxygen species (ROS) secondary to oxidative stress is associated with DNA damage, chromosomal degradation and alterations of both hypermethylation and hypomethylation of DNA. This study concerns differential methylation of promoter regions in specific groups of genes in TNBC and non-TNBC Saudi females in an effort to understand whether epigenetic events might be involved in breast carcinogenesis, and whether they might be used as markers for Saudi BCs. Methylation of glutathione S-transferase P1 (GSTP1), T-cadherin (CDH13), Paired box protein 5 (PAX5), death associated protein kinase (DAPK), twist-related protein (TWIST), DNA-binding protein inhibitor (ID4), High In Normal-1 (HIN-1), cyclin-dependent kinase inhibitor 2A (p16), cyclin D2 and retinoic acid receptor-${\beta}$ ($RAR{\beta}1$) genes was analyzed by methylation specific polymerase chain reaction (MSP) in 200 archival formalin-fixed paraffin embedded BC tissues divided into 3 groups; benign breast tissues (20), TNBC (80) and non-TNBC (100). The relationships between methylation status, and clinical and pathological characteristics of patients and tumors were assessed. Higher frequencies of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 hypermethylation were found in TNBC than in non-TNBC. Hypermethylation of GSTP1, CDH13, ID4, DAPK, HIN-1 and PAX5 increased with tumor grade increasing. Other statistically significant correlations were identified with studied genes. Data from this study suggest that increased hypermethylation of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 genes in TNBC than in non-TNBC can act as useful biomarker for BCs in the Saudi population. The higher frequency of specific hypermethylated genes paralleling tumor grade, size and lymph node involvement suggests contributions to breast cancer initiation and progression.

Assessment of the Prognostic Value of Methylation Status and Expression Levels of FHIT, GSTP1 and p16 in Non-Small Cell Lung Cancer in Egyptian Patients

  • Haroun, Riham Abdel-Hamid;Zakhary, Nadia Iskandar;Mohamed, Mohamed Ragaa;Abdelrahman, Abdelrahman Mohamed;Kandil, Eman Ibrahim;Shalaby, Kamal Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4281-4287
    • /
    • 2014
  • Background: Methylation of tumor suppressor genes has been investigated in all kinds of cancer. Tumor specific epigenetic alterations can be used as a molecular markers of malignancy, which can lead to better diagnosis, prognosis and therapy. Therefore, the aim of this study was to evaluate the association between gene hypermethylation and expression of fragile histidine triad (FHIT), glutathione S-transferase P1 (GSTP1) and p16 genes and various clinicopathologic characteristics in primary non-small cell lung carcinomas (NSCLC). Materials and Methods: The study included 28 primary non-small cell lung carcinomas, where an additional 28 tissue samples taken from apparently normal safety margin surrounding the tumors served as controls. Methylation-specific polymerase chain reaction (MSP) was performed to analyze the methylation status of FHIT, GSTP1 and p16 while their mRNA expression levels were measured using a real-time PCR assay with SYBR Green I. Results: The methylation frequencies of the genes tested in NSCLC specimens were 53.6% for FHIT, 25% for GSTP1, and 0% for p16, and the risk of FHIT hypermethylation increased among patients with NSCLC by 2.88, while the risk of GSTP1 hypermethylation increased by 2.33. Hypermethylation of FHIT gene showed a highly significant correlation with pathologic stage (p<0.01) and a significant correlation with smoking habit and FHIT mRNA expression level (p<0.05). In contrast, no correlation was observed between the methylation of GSTP1 or p16 and smoking habit or any other parameter investigated (p>0.05). Conclusions: Results of the present study suggest that methylation of FHIT is a useful biomarker of biologically aggressive disease in patients with NSCLC. FHIT methylation may play a role in lung cancer later metastatic stages while GSTP1 methylation may rather play a role in the early pathogenesis.

Molecular Basis of Organospecific Carcinogensis by Chemical Carcinogens-Study with Breast Cancer Specific Carcinogens: DMBA as an Indirect-Acting carcinogen and NMU as a Direct-Acting cancinogen. (화학적 발암원의 조직 특이성 암유발기전 - DMBA와 NMU의 선택적 유암 발생기전을 중심으로 )

  • 박종영;김승원;박상철
    • Environmental Mutagens and Carcinogens
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 1989
  • To study the selective organospecific carcinogenesis by the specific chemical carcinogens, the breast cancer induction model by oral administration of 7, 12-dimethylbenzanthracene (DMBA) or by intravenous injection of N-methylni-trosourea (NMU) on female rats was analyzed. In the present experiment, we compared the effexts of ages on the chemical mammary carcinogenesis by studying the metabolic system of the carcinogenic activation, detoxification or DNA damage and repair. The breast tumor incidence was significantly higher in the young rats of 50 days old than in those of one year old rats. As an index of organospecific DNA damage or repair, the in vivo covalent binding index(CBI) of the specific organs by the specific chemical carcinogens was monitored. And for the analysis of carcinogenic activation, the quantity of cytochrome P450`s was determined with the respective type-specific monoclonal antibody, while the detoxication capacity was deduced by the activity monitoring of glutathione S-transferase (GST) and peroxidase. The skin tissues of the mammary region had the highest CBI with both of DMBA and NMU at 50 days of age. And there were contrasting differences in the contents of carcinogenic activation and detoxication system: that is, the content of T.C.D.D.-inducible cytochrome P450 was high, while the activities of GST and peroxidase was low in the mammary skin tissues at tumor prevalent age. These results led us to conclude that the molecular organospecific carcinogenesis, as illustrated with mammary carcinoge-nesis by DMBA and NMU, is operated probably through the differential capacity of the target tissues in the high carcinogenic activation, low detoxication and the low DNA repair function.

  • PDF

Interaction of CLIP-170, a Regulator of Microtubule Plus End Dynamics, with Kinesin 1 via KIF5s (미세소관의 plus end dynamics를 조절하는 CLIP-170과 kinesin 1의 KIF5s를 통한 결합)

  • Jang, Won Hee;Jeong, Young Joo;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.673-679
    • /
    • 2017
  • Microtubules are long rods in the cytoplasm of cells that plays a role in cell motility and intracellular transport. Microtubule-based transport by motor proteins is essential in intracellular transport. Kinesin 1 is a molecular motor protein that mediates the intracellular transport of various membranous vesicles, mRNAs, and proteins along microtubules. It is comprised of two heavy chains (KHCs, also called KIF5s) and two light chains (KLCs). KIF5s bear a motor domain in their amino (N)-terminal regions and interact with various cargoes through the cargo-binding domain in their carboxyl (C)-terminal regions. To identify proteins interacting with KIF5B, yeast two-hybrid screening was performed, and a specific interaction with the cytoplasmic linker protein 170 (CLIP-170), a plus end microtubule-binding protein, was found. The coiled-coil domain of CLIP-170 is essential for interactions with KIF5B in the yeast two-hybrid assay. CLIP-170 bound to the cargo-binding domain of KIF5B. Also, other KIF5s, KIF5A and KIF5C, interacted with CLIP-170 in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5s specifically interacted with CLIP-170. An antibody to KIF5B specifically co-immunoprecipitated CLIP-170 associated with KIF5B from mouse brain extracts. These results suggest that kinesin 1 motor protein may transport CLIP-170 in cells.

Anticarcinogenic Effect of S-allylcysteine (SAC) (S-allylcysteine의 항암효과)

  • Kong, Il-Keun;Kim, Hyun Hee;Min, Gyesik
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1331-1337
    • /
    • 2015
  • S-allylcysteine (SAC) is an aged garlic derived water soluble organosulfur compound and has been suggested to have anticarcinogenic activity against diverse types of cancer cells. This review summarizes the cellular signaling pathways and molecular mechanisms whereby SAC exerts its effects on cellular proliferation, apoptosis, cell cycle progression and metastasis based on the results from both in vitro and in vivo studies. SAC activates proapoptotic proteins including Bax and caspase-3, but suppresses antiapoptotic Bcl-2 family proteins to bring about cancer cell death through mitochondria-mediated intrinsic pathway. SAC also inhibits cellular proliferation by inducing cell cycle arrest in which SAC reduces expression and activation of NF-κB, cyclins, Cdks, PCNA and c-Jun, but elevates expression of cell cycle inhibitor proteins p16 and p21 through suppression of both PI3K/Akt/mTOR and MAPK/ERK signaling pathways. And, SAC inhibits invasion and metastasis of cancer cells by inducing suppression of both angiogenesis and epithelial-mesenchymal transition (EMT) through decreased cyclooxygenase (COX)-2 expression and increased E-cadherin expression which were then caused by suppression of inhibitory transcription factors Id-1 and SLUG from SAC-mediated inactivation of both MAPK/ERK and PI3K/Akt/mTOR/NF-κB signaling pathways. Furthermore, SAC prevents toxic compound-induced carcinogenesis by inducing antioxidant enzymes such as glutathione-s-transferase (GST). Thus, SAC can be considered as a potential chemotherapeutic agent for the prevention and treatment of cancer.

Stress Evaluation to Heavy Metal Exposure using Molecular Marker in Chironomus riparius (분자지표 유전자 발현을 통한 Chironomus riparius 중금속 노출 스트레스 평가)

  • Kim, Won-Seok;Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • Heavy metals are common pollutants in the freshwater environment and have toxicological effect in habitat organisms. The heavy metals highly accumulated in sediment and organism, and observed various physiological responses. In this study, we investigated the molecular response to heavy metal toxicity (Al, Aluminum; Cr, Chromium; Cu, copper; Mn, Manganese; Zn, Zinc) through expression of heat shock protein 40, 70, 90 (HSP40, 70, 90), cytochrome 450 (CYP450), Glutathione S-transferase (GST) and Serine-type endopeptidase (SP). HSPs showed up-regulation in Cu and Zn exposures. Furthermore, HSPs expression in treated groups tended to be higher than the control group. The tendency of CYP450 and GST mRNA expression was higher for Cr and Cu than for other exposure group. The expression of SP gene was low at Al exposure and other group were measured to be similar to control. These results suggest that heavy metal toxicity in freshwater ecosystem may affect physiological and molecular process. Also, the comprehensive gene expression in the aquatic midge Chironomus riparius give useful information to potential molecular biomarkers for assessing heavy metal toxicity.

Sensitivity of Gastric Cancer Cells to Chemotherapy Drugs in Elderly Patients and Its Correlation with Cyclooxygenase-2 Expression

  • Qiu, Zhen-Qin;Qiu, Zhen-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3447-3450
    • /
    • 2015
  • Objective: To explore the sensitivity of gastric cancer cells to chemotherapy drugs in elderly patients and its correlation with cyclooxygenase-2 (COX-2) expression in cancer tissue. Materials and Methods: Forty-three elderly patients with gastric cancer (observation group) and 31 young patients with gastrointestinal tumors (control group) who were all diagnosed by pathology and underwent surgery in the 89th Hospital of Chinese People's Liberation Army were selected. Drug sensitivity testing of tumor cells in primary culture was carried out in both groups using a methyl thiazolyl tetrazolium (MTT) method, and the expression of COX-2 and the factors related to multi-drug resistance (MDR) in cancer tissue were assessed by immunohistochemistry. Results: The inhibition rates (IR) of vincristine (VCR), 5-fluorouracil (5-FU), oxaliplatin (L-OHP), mitomycin (MMC) and epirubicin (eADM) on tumor cells in the observation group were dramatically lower than in the control group, with statistical significance (P<0.05 or P<0.01). The positive rates of COX-2, glutathione s-transferase-${\pi}$ (GST-${\pi}$) and P glycoprotein (P-gp) expression in cancer tissue in the observation group were all higher than in control group (P<0.05), while that of DNA topoisomerase $II{\alpha}$ ($TopoII{\alpha}$) expression lower than in the control group (P<0.01). In the observation group, COX-2 expression in cancer tissue had a significantly-positive correlation with GST-${\pi}$ and P-gp (r=0.855, P=0.000; r=0.240, P=0.026), but a negative correlation with $TopoII{\alpha}$ (r=-0.328, P=0.002). In the control group, COX-2 expression in cancer tissue was only correlated with P-gp positively (r=0.320, P=0.011). Bivariate correlation analysis displayed that COX-2 expression in cancer tissue in the observation group had a significantly-negative correlation with the IRs of 5-FU, L-OHP, paclitaxel (PTX) and eADM in tumor cells (r=-0.723, P=0.000; r=-0.570, P=0.000; r=-0.919, P=0.000; r=-0.781, P=0.000), but with hydroxycamptothecine (HCPT), VCR and 5-FU in the control group (r=-0.915, P=0.000; r=-0.890, P=0.000; r=-0.949, P=0.000). Conclusions: Gastric cancer cells in elderly patients feature stronger MDR, which may be related to high COX-2 expression.

Effect of Taurine Supplement on the Lipid Peroxide Formation and the Activity of Glutathione-Dependent Enzyme in the Liver and Islet of Diabetic Model Mice (당뇨 모델쥐의 간관 췌장에서 타우린이 지질과산화물 생성과 글루타티온 의존성 효소의 활성에 미치는 영향)

  • 임은영;김해리
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.195-201
    • /
    • 1995
  • In this study we wanted to investigate the effect of taurine supplement on the lipid peroxide formation and the activities of glutathione(GSH) dependent enzyme in diabetic model mice. We induce type I diabetes mellitus with alloxan injeciton in ICR mice and type II with high calorie diet in genetically hyperglycemic KK mice. Taurine was given in drinking water at the level of 5%(w/v) for seven days. In type I diabetic model, the malondialdehyde(MDA) of liver and islet significantly increased compared to control group and they significantly decreased by taurine supplement. In type II diabetic model, the concentration of MDA was not changed by taurine supplement. The activities of GSH-peroxidase(GPX) of liver and islet increased in type I diabetic group while decreased in type II. GPX activities were not changed by taurine supplement in the liver of both types but increased in the islet of type II. Taurine supplement has no effect on the activities of GSH S-transferase(GST) in both types. From these results, we suggest that taurine supplement protect against lipid peroxide formation in diabetic model of type I.

  • PDF

Oxidative damage biomarker levels according to Mn-SOD and GST gene polymorphisms in preschool children (Mn-SOD와 GST 유전자 다형성에 따른 유아의 산화손상지표의 분포)

  • Shin, You-kyung;Choi, Ji-Won;Oh, Se-Young;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.48 no.6
    • /
    • pp.468-475
    • /
    • 2015
  • Purpose: Genetic polymorphisms in antioxidant defense and detoxification genes may modulate the levels of oxidative stress biomarkers. Methods: A total of 301 healthy preschool-aged children in the Seoul and Kyung-gi areas were recruited. DNA was extracted from blood for genotyping of manganese superoxide dismutase (Mn-SOD) Val16Ala, glutathione S-transferase (GST) P1 Ile105Val, GSTT1 present/null, and GSTM1 present/null polymorphisms by PCR-restriction fragment length polymorphism or multiplex PCR analyses. In addition to a questionnaire survey, the levels of urinary 8-hydroxyl-2-deoxiguanosine (8-OHdG) and plasma malondialdehyde (MDA) were measured by ELISA. Results: Significantly higher urinary 8-OHdG concentrations were observed in GSTP1 Ile/Val + Val/Val genotype (p = 0.030), and tended to be higher in Mn-SOD Val/Val genotype (p = 0.065). On the other hand, exposure to environmental tobacco smoking (ETS) and interaction between ETS and gene polymorphisms did not significantly influence either urinary 8-OHdG concentrations or serum MDA. Conclusion: Based on our findings, GSTP1 Ile/Val gene polymorphisms might modulate the levels of oxidative stress biomarkers in healthy preschool children.

Effects of Hot-Water Extract of Mulberry Leaf Tea Fermented by Monascus pilosus on Body Weight and Hepatic Antioxidant Enzyme Activities in Mouse Fed a Normal Diet (정상식이 마우스의 체중과 간 조직 항산화계 효소활성에 미치는 Monascus pilosus 발효 뽕잎차 열수추출물의 효과)

  • Lee, Sang-Il;Lee, Ye-Kyung;Kim, Soon-Dong;Lee, In-Ae;Choi, Jongkeun;Suh, Joo-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5646-5657
    • /
    • 2013
  • In this study, to evaluate the anti-obesity effects of mulberry leaf tea and its fermented product by Monascus pilosus, we investigated body and organ weight, blood and liver biomarkers in mice fed 1% tea infusions instead of water for 8 weeks. Mice were divided into three groups such as a normal control (NC), unfermented mulberry leaf tea infusion (UMI) and fermented mulberry leaf tea infusion (FMI). Although it is not significant, tea infusion groups showed reduction of body weight gains compared with NC group. Moreover, contents of LDL-cholesterol and lipid peroxide (LPO), altherogenic index, and xanthin oxidase (XO) activity were significantly decreased, and glutathione S-transferase (GST) activity was significantly elevated. The results from this study suggested that UMI and FMI may have an anti-obesity activity, upregulate antioxidant enzymes and reduce levels of oxidants related to liver damage.