• Title/Summary/Keyword: glutathione transferase

Search Result 884, Processing Time 0.029 seconds

Activity Changes in Phase II Drug-metabolizing Enzymes UDP-Glucoronosyl Transferase and Glutathione S-Ttansferase to Crude Oil Exposure in Mussel and Rockfish (원유의 노출이 담치와 조피볼락의 phase II 약물대사효소 UDP-glucoronosyl transferase 및 glutathione S-transferase의 활성에 미치는 영향)

  • Park Kwan-Ha;Kim Ju-Wan;Park Eum-Mi;Lim Chul-Won;Choi Min-Soon;Choe Sun-Nam;Hwang In-Young;Kim Jung-Sang
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.103-113
    • /
    • 2006
  • This study examined effects of crude oil on the phase II drug-metabolizing enzymes UDP-glucuronosyl transferase (UDPGT) and glutathione S-transferase (GST) in mussel Mytilus edulis and rockfish Sebastes schlegeli, a representative bivalve and a culture fish, respectively. This work also intended indirectly to evaluate the post impact recovery from the massive oil tanker spillage accidents occurred during the summer of 1995 in the sea area off Yosu City, Chonnam. For these, enzyme activities of UDPGT and GST were examined in the fish and mussel following laboratory exposure to fresh crude oil, weathered oil, field-obtained oil residues, or in the field biota samples. Decreased GST activity was observed in rock fish following exposure to oil-soluble fraction (OSF) of fresh oil. A similar diminished GST activity was also observed after OSF of artificially weathered oil. OSF of field oil residues retrieved from the spillage area approximately 1 year later also exerted a slight inhibition of GST to rockfish. There was neither a change in UDPGT in rockfish, nor were there changes in mussel in both enzymes to any oil fractions. We could not observe any difference in the two enzymes either in rockfish or mussel sampled from the field during $1.5{\sim}2.0$ years post spillage, indicating that their enzyme systems might had been recovered by the sampling time. In conclusion, it seems that the inhibition of GST activity in rockfish is a biomarker response to crude oil exposure. The results, however, must be interpreted with care, as the inhibition nay reflect various factors such as oil concentration, duration and water temperature.

Biological Activities of Acidic Polysaccharide of Korean Red Ginseng.111.-Effects on Metabolizing Activities in Acetaminophen- treated Rats (홍삼 산성다당체의 생리활성 연구(111)-아세트아미노펜 처리 흰쥐의 대사기능에 미치는 영향)

  • 이정규;최종원
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.267-273
    • /
    • 1998
  • Pretreatment of acidic polysaccharide of Korean red ginseng (AcPS) for two weeks remarkably lowered the elevated content of lipid peroxide and levels of aminotransferases, sorbitol dehydrogenase, ${\gamma}$-glutamyltransferase, alkaline phosphatase and lactate dehydrogenase in liver intoxicated by acetaminophen (AA) . Pretreatments of AcPS also strengthen the liver function of glutathione related detoxication system indicated by glutathione contents and activities of glutathione S-transferase and glutathione reeducates which were affected by AA treatments. Activity of ${\gamma}$-glutamylcysteine syntheses was not changed by AcPS pretreatment whereas the activity of flu tathione reeducates was increased significantly. These results collectively indicate that the treatments of AcPS can promote the metabolism of lipid and reduce the production of peroxide in acetaminophen-intoxicated animals.

  • PDF

Protective Effect of Curcumin and Aqueous Extract of Onchengyeum on CCI4-induced Hepatotoxicity

  • SEUNG Keum Ran;JUNG Ki Hwa
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.232-239
    • /
    • 2005
  • An aqueous extract of oriental herbal composition named Onchengyeum and curcumin, an antioxidant isolated from turmeric (Curcuma Zonga L.) reduced hepatotoxicity induced by carbon tetrachloride ($CCI_4$). Improved liver function was observed by measuring the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), blood urea nitrogen (BUN), creatinine (CRE), total cholesterol (T-CHO), triglyceride (TG), low density lipoprotein cholesterol (LDL-CHO), high density lipoprotein cholesterol (HDL-CHO), total protein (TP), albumin (ALB) and total bilirubin (BIL) in serum. Hepatic parameters monitored were levels of cholesterol (CHO), triglyceride (TG), and malondialdehyde (MDA) and activities of cytochrome P450 (CYP), NADPH-CYP reductase, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione S-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPx). The histopathological examination showed that the treatment of Onchengyeum and curcumin relieved the ballooning degeneration of hepatocytes which had been generated by $CCI_4$. The results suggested that hepatoprotective effects of Onchengyeum and curcumin possibly are due to their promising antioxidative activity.

Antioxidant Activities in the Lung of Murine Hermansky-Pudlak Syndrome (HPS) Model: Effect of Ionizing Radiation (Hermansky-Pudlak Syndrome (HPS) 생쥐 모델의 폐 항산화계 활성: 방사선의 영향)

  • Shin, Ho-Sang;Yang, Woo-Jung;Choi, Eun-Mi
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.1 s.56
    • /
    • pp.9-17
    • /
    • 2007
  • Hermansky-Pudlak Syndrome (HPS) 환자에서 조기에 발생되는 폐섬유화의 원인을 알아보고자, 생쥐 HPS 모델인 ep/ep,pe/pe 돌연변이종의 폐 항산화계의 환성과 방사선에 대한 반응을 측정하였다. HPS 폐에서는 대조군에 비해 glutathione이 더 산화되어 있었고, catalase, glutathione S-transferase(GST) 등의 항산화효소의 활성이 저하되어 있었으며, 10 Gy의 방사선을 조사하였을 때, glutathione 양이 감소하였고, 대조군 폐에서 보여지는 방사선에 의한 ${\gamma}$-glutamylcysteine ligase(GCL), glutathione peroxidase(GPx) 활성의 유의성 있는 증가가 관찰되지 않았다. 이 결과로부터 HPS 환자의 폐는 항산화계 활성이 저하되어 있을 뿐 아니라, 산화적 스트레스가 가해 졌을 때 적응 반응이 매우 취약하여 산화적 환경에 노출된 폐의 병증을 유발할 수 있음을 추측할 수 있다.

Protective Effect of Sachungwhan against CCl4-induced Hepatotoxicity

  • Koo, Ja-Young;Jung, Ki-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.207-215
    • /
    • 2006
  • Sachungwhan reduced hepatotoxicity induced by carbon tetrachloride($CCl_4$). Improved liver function was observed by measuring the activities of aspartate aminotransferase(AST), alanine aminotransferase(ALT), alkaline phosphatase(ALP), blood urea nitrogen(BUN), creatinine(CRE), total cholesterol(TCHO), triglyceride(TG), low density lipoprotein cholesterol(LDL-CHO), high density lipoprotein cholesterol(HDL-CHO), total protein(TP), albumin(ALB) and total bilirubin(BIL) in serum. Hepatic parameters monitored were levels of cholesterol(CHO), triglyceride(TG), malondialdehyde(MDA), content of cytochrome P450(CYP), level of glutathione(GSH), and activities of NADPH-CYP reductase, superoxide dismutase(SOD), catalase(CAT), glutathione S-transferase(GST), glutathione reductase(GR), glutathione peroxidase(GPx). The histopathological examination showed that the treatment of Sachungwhan relieved the ballooning degeneration of hepatocytes which had been generated by $CCl_4$. The results suggested that hepatoprotective effects of Sachungwhan possibly are due to their promising antioxidative activity.

Exposure to Sublethal Concentrations of Copper Pyrithione Reduces Cholinergic Activity and Induces Oxidative Stress in a Marine Polychaete

  • Md. Niamul, Haque;Jae-Sung, Rhee
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • Despite concerns about the significant toxicity of copper pyrithione (CuPT) at environmental concentrations, effects of CuPT on benthic organisms have received little attention. Here, we analyzed the detrimental effects of CuPT at sublethal concentrations (1/50, 1/20, and 1/10 of the 96 h-LC50 value) for 14 days in the marine polychaete Perinereis aibuhitensis. Reduced burrowing activity and significantly decreased the acetylcholinesterase activity in response to relatively high concentrations of CuPT were identified as CuPT-triggered cholinergic inhibition. The lipid peroxidation marker, malondialdehyde levels were dose-dependently increased, whereas intracellular glutathione was depleted by relatively high concentrations. In the CuPT-treated polychaete, significant fluctuations in the enzymatic activities of the antioxidant defense system (catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase) were observed with significantly modulated glutathione 𝘚-transferase activity. These results indicate that even sublethal levels of CuPT would have detrimental effects on the health status of the marine polychaete.

Effect of Cyclohexane Treatment on Serum Level of Glutathione S-Transferase Activity in Liver Damaged Rats ($CCl_4$ 에 의한 간손상 모델 실험동물에 있어서 cyclohexane 투여가 혈청 glutathione S-transferase 활성에 미치는 영향)

  • 오정대;윤종국
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.80-86
    • /
    • 2003
  • To evaluate the effect of cyclohexane(CH) treatment on the serum levels of glutathion S-transferase(GST) activity in liver damaged animals, damaged liver was induced with pretreatment of 50% $CCl_4$ dissolved in olive oil (0.1 m1/100g body weight) intraperitoneally 17 times every other day. To $CCl_4$-treated rats, CH (1.56 g/kg body weight, i.p) was injected once and then the animals were sacrificed at 4 hours after injection of CH. The $CCl_4$-treated animals were identified as severe liver damage on the basis of liver functional findings, 1,e, increased serum levels of alanine aminotransferase(ALT), alkaline phosphate(ALP) and xanthine oxidase(XO) activities. On the other hand, $CCl_4$-treated animals injected with CH once($CCl_4$-pretreated animals) showed more decreased serum levels of ALT and XO, and more increased those of ALP rather than $CCl_4$-treated animals. In case of comparing the GST with ALT activity in liver, both $CCl_4$-treated and pretreated animals showed similar changing pattern of enzyme actvity. Especially $CCl_4$-pretreated animals showed significantly increased serum level of GST actvity compared with the $CCl_4$-treated those, whereas those of ALT showed reversed tendency. In aspects of GST enzyme kinetics, $CCl_4$-pretreated animals showed higher Vmax of liver GST enzyme than $CCl_4$-treated animals. In conclusion, injection of CH to the liver damaged rats led to enhanced liver damage and more increased activity of serum GST which may be chiefly caused by the enzyme induction.

Effect of Dietary Supplementation of β-Carotene on Hepatic Antioxidant Enzyme Activities and Glutathione Concentration in Diabetic Rats (β-Carotene의 섭취가 당뇨 유도 흰쥐의 간조직 항산화효소 활성과 Glutathione 함량에 미치는 영향)

  • Jang, Jung-Hyun;Lee, Kyeung-Soon;Seo, Jung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1092-1098
    • /
    • 2011
  • The present study was conducted to investigate the effect of ${\beta}$-carotene on the antioxidant system of rats with diabetes. Forty Sprague Dawley rats were fed the AIN-76 control diet or the same diet supplemented with ${\beta}$-carotene (7.2 mg/kg diet) for 3 weeks, then diabetes was induced in half the rats by administering streptozotocin (45 mg/kg BW) into the femoral muscle. Diabetic and normal rats were fed the experimental diets for 2 more weeks. To investigate the effect of dietary ${\beta}$-carotene on diabetes, the activities of antioxidative enzymes and glutathione concentration were determined in normal and streptozotocin-induced diabetic rats. The plasma glucose levels in diabetic rats were not influenced by the dietary supplementation of ${\beta}$-carotene. Hepatic activities of catalase and superoxide dismutase in diabetic rats were significantly lower than those of control rats but ${\beta}$-carotene tended to induce these activities. Glutathione-S-transferase activity was not significantly different between experimental groups. Glucose-6-phosphatase activity was induced in diabetic rats, but dietary supplementation of ${\beta}$-carotene reduced this activity. The hepatic concentration of reduced glutathione in diabetic rats was lower than that of control rats, but dietary supplementation with ${\beta}$-carotene restored the content to some extent. These data suggest that diabetic rats are exposed to increased oxidative stress and that dietary supplementation with ${\beta}$-carotene may reduce its detrimental effects.

Molecular Characterization and Expression Analysis of a Glutathione S-Transferase cDNA from Abalone (Haliotis discus hannai) (북방전복 (Haliotis discus hannai)에서 분리한 Glutathione S-transferase 유전자의 분자생물학적 고찰 및 발현분석)

  • Moon, Ji Young;Park, Eun Hee;Kong, Hee Jeong;Kim, Dong-Gyun;Kim, Young-Ok;Kim, Woo-Jin;An, Cheul Min;Nam, Bo-Hye
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.399-408
    • /
    • 2014
  • Glutathione S-transferases (GSTs) are a superfamily of detoxification enzymes that primarily catalyze the nucleophilic addition of reduced glutathione to both endogenous and exogenous electrophiles. In this study, we isolated and characterized a full-length of alpha class GST cDNA from the abalone (Haliotis discus hannai). The abalone GST cDNA encodes a 223-amino acid polypeptide with a calculated molecular mass of 25.8 kDa and isoelectric point of 5.69. Multiple alignments and phylogenetic analysis with the deduced abalone GST protein revealed that it belongs to the alpha class GSTs and showed strong homology with disk abalone (Haliotis discus discus) putative alpha class GST. Abalone GST mRNA was ubiquitously detected in all tested tissues. GST mRNA expression was comparatively high in the mantle, gill, liver, and digestive duct, however, lowest in the hemocytes. Expression level of abalone GST mRNA in the mantle, gill, liver, and digestive duct was 182.7-fold, 114.8-fold, 4675.8-fold, 406.1-fold higher than in the hemocytes, respectively. Expression level of abalone GST mRNA in the liver was peaked at 6 h post-infection with Vibrio parahemolyticus and decreased at 12 h post-infection. While the expression level of abalone GST mRNA in the hemocytes was drastically increased at 3 h post-infection with Vibrio parahemolyticus. These results suggest that abalone GST is conserved through evolution and may play roles similar to its mammalian counterparts.

Increase of Salt and Low Temperature Tolerance by Overexpressing Glutathione S-Transferase (GST) Gene (염분과 저온에 대한 내성증진을 위한 GST 유전자의 과발현)

  • Jun Chol Kim;Il Seop Kim;Won Hee Kang
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.139-143
    • /
    • 2002
  • Cotton Glutathione S-Transferase (GST: EC 2.5.1.18) was cloned and overexpressed in tobacco (Nicotiana tabacum) plants. Northern blot analysis confirmed the successful transformation of cotton gst gene in tobacco plant. Type I and Type ll transcript patterns were identified in transgenic tobacco plants and only Type I transcripts were discussed in this paper, The activity of GST in the type II transgenic plants was about 1.5-fold higher than those of the wild type and non-expresser by using 1-chloro-2,4-dinitrobenzene (CDNB) and reduced glutathione as the substrate. The expression of cotton GST in tobacco plants proved that Gh-5 could be translated into functional protein. Type II transgenic plants produced functional GST in the cells. The effects of cotton GST in the seedlings was evaluated by growing the control and transgenic seedlings at $15^{\circ}C$ in the growth chamber in the light. Overexpressors were grown well compared to the control plants (non-expressors). lo test far tolerance to salinity, seeds of Gh-5 overexpressors and the wild type Xanthi seedlings were grown at 0, 50, 100, 150, and 200 mM NaCl solution. Gh-5 transgenic seedlings showed higher growth rate over control seedlings on 50 and 100 mM NaCl solution. There was no difference in growth rate at 150 and 200mM NaCl concentration.