Browse > Article
http://dx.doi.org/10.23005/ksmls.2022.7.2.113

Exposure to Sublethal Concentrations of Copper Pyrithione Reduces Cholinergic Activity and Induces Oxidative Stress in a Marine Polychaete  

Md. Niamul, Haque (Department of Marine Science, College of Natural Sciences, Incheon National University)
Jae-Sung, Rhee (Department of Marine Science, College of Natural Sciences, Incheon National University)
Publication Information
Journal of Marine Life Science / v.7, no.2, 2022 , pp. 113-120 More about this Journal
Abstract
Despite concerns about the significant toxicity of copper pyrithione (CuPT) at environmental concentrations, effects of CuPT on benthic organisms have received little attention. Here, we analyzed the detrimental effects of CuPT at sublethal concentrations (1/50, 1/20, and 1/10 of the 96 h-LC50 value) for 14 days in the marine polychaete Perinereis aibuhitensis. Reduced burrowing activity and significantly decreased the acetylcholinesterase activity in response to relatively high concentrations of CuPT were identified as CuPT-triggered cholinergic inhibition. The lipid peroxidation marker, malondialdehyde levels were dose-dependently increased, whereas intracellular glutathione was depleted by relatively high concentrations. In the CuPT-treated polychaete, significant fluctuations in the enzymatic activities of the antioxidant defense system (catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase) were observed with significantly modulated glutathione 𝘚-transferase activity. These results indicate that even sublethal levels of CuPT would have detrimental effects on the health status of the marine polychaete.
Keywords
Marine polychaete; Copper pyrithione; Acetylcholinesterase; Lipid peroxidation; Antioxidant defense; Oxidative stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fonseca TG, Auguste M, Ribeiro F, Cardoso C, Mestre NC, Abessa DMS, Bebianno MJ. 2018. Environmental relevant levels of the cytotoxic drug cyclophosphamide produce harmful effects in the polychaete Nereis diversicolor. Sci Total Environ 636: 798-809.   DOI
2 Goka K. 1999. Embryotoxicity of zinc pyrithione, an antidandruff chemical, in fish. Environ Res 81: 81-83.   DOI
3 Grunnet KS, Dahllof I. 2005. Environmental fate of the antifouling compound zinc pyrithione in seawater. Environ Toxicol Chem 24: 3001-3006.   DOI
4 Guthery E, Seal LA, Anderson EL. 2005. Zinc pyrithione in alcohol-based products for skin antisepsis: persistence of antimicrobial effects. Am J Infect Control 33: 15-22.   DOI
5 Haque MN, Nam S-E, Eom H-J, Kim S-K, Rhee J-S. 2020. Exposure to sublethal concentrations of zinc pyrithione inhibits growth and survival of marine polychaete through induction of oxidative stress and DNA damage. Mar Pollut Bull 156: 111276.
6 Kobayashi N, Okamura H. 2002. Effects of new antifouling compounds on the development of sea urchin. Mar Pollut Bull 44: 748-751.   DOI
7 Lesser MP. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68: 253-278.   DOI
8 Livingstone DR. 2001. Contaminated-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42: 656-666.   DOI
9 Lushchak VI. 2011. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101: 13-30.   DOI
10 Min B-H, Saravanan M, Nam S-E, Eom H-J, Rhee J-S. 2019. Waterborne zinc pyrithione modulates immunity, biochemical, and antioxidant parameters in the blood of olive flounder. Fish Shellfish Immunol 92: 469-479.   DOI
11 Mochida K, Ito K, Harino H, Onduka T, Kakuno A, Fujii K. 2008. Early life-stage toxicity test for copper pyrithione and induction of skeletal anomaly in a teleost, the mummichog (Fundulus heteroclitus). Environ Toxicol Chem 27: 367-374.   DOI
12 Nogueira AF, Nunes B. 2021. Acute and chronic effects of diazepam on the polychaete Hediste diversicolor: Antioxidant, metabolic, pharmacologic, neurotoxic and behavioural mechanistic traits. Environ Toxicol Pharmacol 82: 103538.
13 Nunes B, Costa M. 2019. Study of the effects of zinc pyrithione in biochemical parameters of the Polychaeta Hediste diversicolor: evidences of neurotoxicity at ecologically relevant concentrations. Environ Sci Pollut Res 26: 13551-13559.   DOI
14 Nunes B. 2011. The use of cholinesterases in ecotoxicology. Rev Environ Contam Toxicol 212: 29-59.   DOI
15 Reish DJ, Gerlinger TV. 1997. A review of the toxicological studies with polychaetous annelids. Bull Mar Sci 60: 584-607.
16 Rhee J-S, Lee Y-M, Hwang D-S, Won E-J, Raisuddin S, Shin K-H, Lee J-S. 2007. Molecular cloning, expression, biochemical characteristics, and biomarker potential of theta class glutathione 𝘚-transferase (GST-T) from the polychaete Neanthes succinea. Aquat Toxicol 83: 104-115.   DOI
17 Rhee J-S, Won E-J, Kim R-O, Choi B-S, Choi I-Y, Park GS, Shin KH, Lee Y-M, Lee J-S. 2012. The polychaete, Perinereis nuntiaESTs and its use to uncover potential biomarker genes for molecular ecotoxicological studies. Environ Res 112: 48-57.   DOI
18 Schiff K, Brown J, Diehl D, Greenstein D. 2007. Extent and magnitude of copper contamination in marinas of the San Diego region, California, USA. Mar Pollut Bull 54: 322-328.   DOI
19 Sheehan D, Foley DM, Dowd CA. 2001. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360: 1-16.   DOI
20 Sies H. 1997. Oxidative stress: oxidants and antioxidants. Exp Physiol 82: 291-295.   DOI
21 Thomas KV. 1999. Determination of the antifouling agent zinc pyrithione in water samples by copper chelate formation and high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 833: 105-109.   DOI
22 Winston GW, Di Giulio RT. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol. 19: 137-161.   DOI
23 Yebra DM, Kiil S, Johansen KD. 2004. Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50: 75-104.    DOI
24 Almond KM, Trombetta LD. 2016. The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos. Ecotoxicology 25: 389-398.   DOI
25 Biscocho D, Cook JG, Long J, Shah N, Leise EM. 2018. GABA is an inhibitory neurotransmitter in the neural circuit regulating metamorphosis in a marine snail. Dev Neurobiol 78: 736-753.   DOI
26 Bonnard M, Romeo M, Amiard-Triquet C. 2009. Effects of copper on the burrowing behavior of estuarine and coastal invertebrates, the polychaete Nereis diversicolor and the bivalve Scrobicularia plana. Hum Ecol Risk Assess 15: 11-26.   DOI
27 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.   DOI
28 Dean HK. 2008. The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Rev Biol Trop 56: 11-38.
29 Doose CA, Ranke J, Stock F, Bottin-Weber U, Jastorff B. 2004. Structure-activity relationships of pyrithiones-IPC-81 toxicity tests with the antifouling biocide zinc pyrithione and structural analogs. Green Chem 6: 259-266.   DOI
30 Dorgan KM, Arwade SR, Jumars PA. 2007. Burrowing in marine muds by crack propagation: kinematics and forces. J Exp Biol 210: 4198-4212.   DOI
31 Dorgan KM, Arwade SR, Jumars PA. 2008. Worms as wedges: effects of sediment mechanics on burrowing behavior. J Mar Res 66: 219-254.   DOI
32 Ellman GL, Courtney KD, Andres Jr. V, Feather-Stone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95.   DOI
33 Eom H-J, Haque MN, Nam S-E, Lee D-H, Rhee J-S. 2019. Effects of sublethal concentrations of the antifouling biocide Sea-Nine on biochemical parameters of the marine polychaete Perinereis aibuhitensis. Comp Biochem Physiol C Toxicol Pharmacol 222: 125-134.   DOI