DOI QR코드

DOI QR Code

Effect of Dietary Supplementation of β-Carotene on Hepatic Antioxidant Enzyme Activities and Glutathione Concentration in Diabetic Rats

β-Carotene의 섭취가 당뇨 유도 흰쥐의 간조직 항산화효소 활성과 Glutathione 함량에 미치는 영향

  • Jang, Jung-Hyun (Dept. of Beauty Culture and Cosmetic, Dong Eui Institute of Technology) ;
  • Lee, Kyeung-Soon (Dept. of Food and Nutrition and Cooking, Taegu Science University) ;
  • Seo, Jung-Sook (Dept. of Food and Nutrition, Yeungnam University)
  • 장정현 (동의과학대학 미용계열) ;
  • 이경순 (대구과학대학교 식품영양조리계열) ;
  • 서정숙 (영남대학교 식품영양학과)
  • Received : 2011.03.25
  • Accepted : 2011.07.07
  • Published : 2011.08.31

Abstract

The present study was conducted to investigate the effect of ${\beta}$-carotene on the antioxidant system of rats with diabetes. Forty Sprague Dawley rats were fed the AIN-76 control diet or the same diet supplemented with ${\beta}$-carotene (7.2 mg/kg diet) for 3 weeks, then diabetes was induced in half the rats by administering streptozotocin (45 mg/kg BW) into the femoral muscle. Diabetic and normal rats were fed the experimental diets for 2 more weeks. To investigate the effect of dietary ${\beta}$-carotene on diabetes, the activities of antioxidative enzymes and glutathione concentration were determined in normal and streptozotocin-induced diabetic rats. The plasma glucose levels in diabetic rats were not influenced by the dietary supplementation of ${\beta}$-carotene. Hepatic activities of catalase and superoxide dismutase in diabetic rats were significantly lower than those of control rats but ${\beta}$-carotene tended to induce these activities. Glutathione-S-transferase activity was not significantly different between experimental groups. Glucose-6-phosphatase activity was induced in diabetic rats, but dietary supplementation of ${\beta}$-carotene reduced this activity. The hepatic concentration of reduced glutathione in diabetic rats was lower than that of control rats, but dietary supplementation with ${\beta}$-carotene restored the content to some extent. These data suggest that diabetic rats are exposed to increased oxidative stress and that dietary supplementation with ${\beta}$-carotene may reduce its detrimental effects.

본 연구에서는 당뇨병의 치료에 중요한 저해요인으로 제기되고 있는 당뇨합병증을 예방하고자 녹황색 채소 등을 통해 식사 시 한국인들이 쉽게 섭취할 수 있는 ${\beta}$-carotene의 혈관계 합병증 예방효과를 분석하고자 하였다. 간 미토콘드리아에서의 catalase 활성은 ${\beta}$-carotene을 급여한 비당뇨군에서 유의적으로 높은 활성을 나타내었으나 당뇨군에서는 ${\beta}$-carotene 급여에 의한 영향을 나타내지 않았다. 간 사이토졸 내의 superoxide dismutase 활성은 ${\beta}$-carotene을 급여하지 않은 당뇨군에서 그 활성이 가장 저하되었으나 ${\beta}$-carotene 공급에 의해 유의적으로 증가되었다. 간 사이토졸 내의 glutathione-S-transferase 활성은 ${\beta}$-carotene의 급여에 의한 차이가 없었다. 간 마이크로솜에서의 glucose-6-phosphatase 활성은 대조군에 비하여 ${\beta}$-carotene을 급여하지 않은 당뇨군에서 유의적으로 높게 나타났으나 ${\beta}$-carotene을 급여한 당뇨군에서는 활성이 유의적으로 저하되었다. 간조직의 환원형 glutathione 함량은 당뇨군에서 유의적으로 감소되었으며, 당뇨군에서 ${\beta}$-carotene의 급여로 증가하였다. 이상의 결과에서 볼 때 ${\beta}$-carotene의 섭취는 당뇨 유도에 의한 산화스트레스가 증가된 생리적 상태에서 glutathione의 소모를 감소시키고, 항산화 효소계 중 특히 superoxide dismutase 활성을 유도하여 과산화 라디칼을 환원시킴으로써 활성산소에 의해 유발되는 산화적 손상의 일차적 방어에 관여한 것으로 여겨진다. 따라서 인체시험 등을 통한 후속연구와 연계하여 ${\beta}$-carotene 수준을 적절하게 보충 섭취한다면 당뇨로 인한 항산화계 활성의 변화를 조절함으로써 산화스트레스에 대한 보호효과를 나타내어 당뇨병 합병증의 예방에 기여할 수 있을 것으로 여겨진다.

Keywords

References

  1. Ministry for health, welfare and family affairs: The Forth Korea National Health and Nutrition Examination Survey (KNHANES IV). Available from://knhanes.cds.go.kr (updated 2011. 5)
  2. Ahn KJ. 2010. Westernization of Korean Diabetes. Korea Clin Diabetes J 11: 91-94.
  3. Drews G, Krippeit-Drews P, Düfer M. 2010. Oxidative stress and beta-cell dysfunction. Pflugers Arch 460: 703-718. https://doi.org/10.1007/s00424-010-0862-9
  4. Kupczyk D, Rybka J, Kedziora-Kornatowska K, Kedziora J. 2010. Melatonin and oxidative stress in elderly patients with type 2 diabetes. Pol Merkur Lekarski 28: 407-409.
  5. Chon S, Kwon MK, Oh SJ, Woo JT, Kim SW, Kim JW, Kim YS. 2008. The relationship between antioxidant enzyme activities and diabetic microvascular complications in type 2 diabetic patients. J Kyung Hee Univ Med Cent 24: 90-97.
  6. Kim SS, Son SM. 2008. Oxidative stress and cell dysfunction in diabetes: role of ROS produced by mitochondria and NAD(P)H oxidase. Korea Diabetes J 32: 389-398. https://doi.org/10.4093/kdj.2008.32.5.389
  7. Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. 2010. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thai 93: 682-693.
  8. Kim SS, Kim SY, Lee SH, Kang YH, Kim IJ, Kim YK, Son SM. 2009. High glucose and/or free fatty acid damage vascular endothelial cells via stimulating of NAD(P)H oxidase- induced superoxide production from neutrophils. Korea Diabetes J 33: 94-104. https://doi.org/10.4093/kdj.2009.33.2.9
  9. Ahn BS, Kim JW, Kim HT, Lee SD, Lee KW. 2010. Antioxidant effects of Hovenia dulcis in the streptozotocin-induced diabetic rats. J Vet Clin 27: 366-373.
  10. Bae JC, Lee WY. 2010. Executive summary: Standards of medical care in diabetes-2010 by American Diabetes Association. Korea Clin Diabetes J 11: 10-18.
  11. Dixit Y, Kar A. 2010. Protective role of three vegetable peels in alloxan induced diabetes mellitus in male mice. Plant Foods Hum Nutr 65: 284-289. https://doi.org/10.1007/s11130-010-0175-3
  12. Chang JH, Kim MS, Kim JY, Choi WH, Lee SS. 2007. Effects of mushroom supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Korea J Nutr 40: 327-333.
  13. Grag MC, Chaudhary DP, Bansal DD. 2005. Effect of vitamin E supplementation on diabetes induced oxidative stress in experimental diabetes in rats. Indian J Exp Biol 43: 177-180.
  14. Cunningham JJ. 1998. Micronutrients as nutraceutical interventions in diabetes mellitus. J Am Coll Nutr 17: 7-10. https://doi.org/10.1080/07315724.1998.10718729
  15. Cho SW, Paek YM, Kang JY, Park YK, Choi TI. 2009. The relationship between plasma antioxidant levels and metabolic syndrome risk factors in male workers. Korea J Food Nutr 22: 357-366.
  16. Hwang MR, Soh JR, Lim HS. 2009. Effects of folic acid and ascorbate supplementation on plasma homocysteine and oxidative stress in patients with type 2 diabetes mellitus. Korea J Nutr 42: 107-118. https://doi.org/10.4163/kjn.2009.42.2.107
  17. Lu J, Dixon WT, Tsin AT, Basu TK. 2000. The metabolic availability of vitamin A is decreased at the onset of diabetes in BB rats. J Nutr 130: 1958-1962. https://doi.org/10.1093/jn/130.8.1958
  18. Grune T, Lietz G, Palou A, Ross AC, Stahl W, Tang G, Thurnham D, Yin SA, Biesalski HK. 2010. Beta-carotene is an important vitamin A source for humans. J Nutr 140: 2268S-2285S. https://doi.org/10.3945/jn.109.112441
  19. Ambrosini GL, de Klerk NH, Fritschi L, Mackerras D, Musk B. 2008. Fruit, vegetable, vitamin A intakes, and prostate cancer risk. Prostate Cancer Prostatic Dis 11: 61-66. https://doi.org/10.1038/sj.pcan.4500979
  20. Elizabeth JJ. 2002. The role of carotenoids in human health. Nutrition in Clinical Care 5: 56-65. https://doi.org/10.1046/j.1523-5408.2002.00004.x
  21. Sergio AR, Paiva MD, Robert M, Russell MD. 1999. ${\beta}$-Carotene and other carotenoids as antioxidants. J Am Coll Nutr 18: 426-433. https://doi.org/10.1080/07315724.1999.10718880
  22. Hercberg S, Czernichow S, Galan P. 2009. Tell me what your blood beta-carotene level is, I will tell you what your health risk is! The viewpoint of the SUVIMAX researchers. Ann Nutr Metab 54: 310-312. https://doi.org/10.1159/000239849
  23. Vardi, N, Parlakpinar H, Cetin A, Erdogan A, Ozturk IC. 2010. Protective effect of ${\beta}$-carotene on methotrexate-induced oxidative liver damage. Toxicologic Pathology 38: 592-597. https://doi.org/10.1177/0192623310367806
  24. Akbaraly TN, Favier A, Fontbonne A, Berr C. 2008. Plasma carotenoids and onset of dysglycemia in an elderly population. Diabetes Care 31: 1355-1359. https://doi.org/10.2337/dc07-2113
  25. Lee HJ, Park YK, Kang MH. 2009. The effect of carrot juice, ${\beta}$-carotene supplementation on plasma antioxidant status of Korean smokers. Korea J Nutr 42: 750-758. https://doi.org/10.4163/kjn.2009.42.8.750
  26. Song Y, Cook NR, Albert CM, Denburgh MV, Manson JE. 2009. Effects of vitamin C and E and ${\beta}$-carotene on the risk of type 2 diabetes in women at high risk of cardiovascular disease: a randomized controlled trial. Am J Clin Nutr 90: 429-437. https://doi.org/10.3945/ajcn.2009.27491
  27. Furusho T, Kataoka E, Yasuhara T, Wada M, Innami S. 2002. Administration of beta-carotene suppresses lipid peroxidation in tissues and improves the glucose tolerance ability of streptozotocin-induced diabetic rats. Int J Vitam Nutr Res 72: 71-76. https://doi.org/10.1024/0300-9831.72.2.71
  28. Maritim A, Dene BA, Sanders RA, Watkins III JB. 2002. Effects of ${\beta}$-carotene on oxidative stress in normal and diabetic rats. J Biochem Mol Toxicol 16: 203-208. https://doi.org/10.1002/jbt.10038
  29. Aebi H. 1974. Catalase. In Methods of Enzymatic Analysis. Bergmeyer HU, ed. Academic Press, New York, NY, USA. Vol 2, p 673-689.
  30. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  31. Habig WH, Pabist MJ, Jabby WB. 1974. Glutathione-Stransferase: The first enzymatic step mercapturic acid formation. J Biol Chem 249: 7130-7139.
  32. Baginski ES, Foa PP, Zak B. 1983. Glucose-6-phosphatase. In Methods of Enzymatic Analysis. Bergmeyer HU, ed. Academic Press, New York, NY, USA. Vol 2, p 876-880.
  33. Theodrous PM, Helmut S. 1991. Assay of glutathione, glutathione sulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 198: 177-373.
  34. Seo J, Lee K, Jang J. 2004. Effect of dietary supplementation of ${\beta}$-carotene on lipid peroxidation level and antioxidative vitamins of diabetic rats. J Korean Soc Food Sci Nutr 33: 72-77. https://doi.org/10.3746/jkfn.2004.33.1.072
  35. Perry JR, Ferrucci L, Bandinelli S, Guralnik J, Semba RD, Rice N, Melzer D. 2009. Circulating beta-carotene levels and type 2 diabetes-cause or effect? Diabetologia 52: 2117-2121. https://doi.org/10.1007/s00125-009-1475-8
  36. Arai K, Maguchi S, Fujii S, Ishibashi H, Oikawa K, Taniguchi N. 1987. Glycation and inactivation of human Cu-Znsuperoxide dismutase. Identification of the in vitro glycated sites. J Biol Chem 262: 16969-16972.
  37. Levy Y, Zaltsberg H, Ben-Amotz A, Kanter Y, Aviram M. 2000. Dietary supplementation of a natural isomer mixture of beta-carotene inhibits oxidation of LDL derived from patients with diabetes mellitus. Ann Nutr Metab 44: 54-60. https://doi.org/10.1159/000012821
  38. Woodall AA, Britton G, Jackson MJ. 1997. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: Relationship between carotenoid structure and protective ability. Biochem Biophys Acta 1336: 575-586. https://doi.org/10.1016/S0304-4165(97)00007-X
  39. Mekinova D, Chorvathova V, Volkovova K, Staruchova M, Grancicova E, Klvanova J, Ondreicka R. 1995. Effect of intake of exogenous vitamins C, E, and ${\beta}$-carotene on the antioxidative status in kidneys of rats with streptozotocin- induced diabetes. Nahrung 39: 257-261. https://doi.org/10.1002/food.19950390402
  40. De Luca C, Filosa A, Grandinetti M, Maggio F, Lamba M, Passi S. 1999. Blood antioxidant status and urinary levels of catecholamine metabolites in beta-thalassemia. Free Radic Res 30: 453-462. https://doi.org/10.1080/10715769900300491
  41. Zheng J, Rautiainen S, Morgenstem R, Wolk A. 2011. Relationship between plasma carotenoids, fruit and vegetable intake, and plasma extracellular superoxide dismutase activity in women: different in health and disease? Antioxid Redox Signal 14: 9-14. https://doi.org/10.1089/ars.2010.3633
  42. Nordlie RC, Foster JD. A. 2010. Retrospective review of the roles of multifunctional glucose-6-phosphotase in blood glucose homeostasis: Genesis of the tuning/retuning hypothesis. Life Sci 87: 339-349. https://doi.org/10.1016/j.lfs.2010.06.021
  43. Pari L, Rajarajeswari N. 2009. Efficacy of coumarin on hepatic key enzymes of glucose metabolism in chemical induced type 2 diabetic rats. Chem Biol Interac 181: 292-296. https://doi.org/10.1016/j.cbi.2009.07.018
  44. Giammarioli S, Filesi C, Vitale B, Cantagallo A, Dragoni F, Sanzini E. 2004. Effect of high intakes of fruit and vegetables on redox status in type 2 onset diabetes: a pilot study. Int J Vitam Nutr Res 74: 313-320. https://doi.org/10.1024/0300-9831.74.5.313
  45. Darmaun D, Smith SD, Sweeten S, Sager BK, Welch S, Mauras N. 2005. Evidence for accelerated rates of glutathione utilization and glutathione depletion in adolescents with poorly controlled type 1 diabetes. Diabetes 54: 190-196. https://doi.org/10.2337/diabetes.54.1.190

Cited by

  1. Quality Characteristics of Dinner Roll Added with Lyophilized Sweet Potato Powder and Its Effect on the Blood Glucose Level vol.45, pp.1, 2013, https://doi.org/10.9721/KJFST.2013.45.1.40