• Title/Summary/Keyword: glucosinolate content

Search Result 58, Processing Time 0.023 seconds

The Glucosinolate and Sulforaphane Contents of Land Race Radish and Wild Race Radish Extracts and Their Inhibititory Effects on Cancer Cell Lines (재래종 무와 갯무 추출물의 암세포주 증식 저해 활성 및 Glucosinolate와 Sulforaphane의 함량)

  • Choi, Sun-Ju;Choi, A-Reum;Cho, Eun-Hye;Kim, So-Young;Lee, Gun-Soon;Lee, Soo-Seong;Chae, Hee-Jeong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.4
    • /
    • pp.558-563
    • /
    • 2009
  • The inhibitory effects of land race radish (LRR) and wild race radish (WRR) extracts on cancer cell lines were investigated. A and their glucosinolate and sulforaphane contents were analyzed. The anticancer activitiesy of the LRR and WRR extracts on the breast cancer cell line MCF-7 were determined by a CCK (cell counting kit) assay, in which WWR showed higher inhibition rates than LRR. The sulforaphane content of WRR was higher than that of LRR. In the lung cancer cell line, A-549, WRR showed higher inhibition rates and a higher total glucosinolate content than LRR. The glucosinolate contents of the radishes were analyzed by the Pd-quicktest method, showing that WRR contained more glucosinolate than LRR in both the trunk and root. In conclusion, these results indicate that wild race radish could be used for the quality improvement of radishes.

  • PDF

Effect of cultivars on hairy root induction and glucosinolate biosynthesis in a hairy root culture of Kimchi cabbage (Brassica rapa L. ssp. Pekinensis

  • Sang Un Park;Sook Young Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.1
    • /
    • pp.51-60
    • /
    • 2022
  • Cruciferous vegetables are rich in biologically active compounds such as glucosinolates and have various health benefits. Among these vegetables, Kimchi cabbage (Brassica rapa L. ssp. Pekinensis) is one of the most popular leafy vegetables due to the presence of the highest amounts of numerous vital phytonutrients, minerals, vitamins, and antioxidants. This study aims to investigate the effects of six cultivars (Chundong 102, Asia No Rang Mini, Hwimori Gold, Asia Seoul, Wol Dong Chun Chae, and Asia Bbu Ri) on hairy root induction and glucosinolate biosynthesis in the hairy root cultures of Kimchi cabbage. Seven different glucosinolates, in this case sinigrin, gluconapin, glucoerucin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin, were detected in the hairy root cultures of Kimchi cabbage. Among the different cultivars, Asia No Rang Mini was the most promising candidate for hairy root stimulation, as it achieved the highest values for the growth rate, root number, root length, transformation efficiency, and total glucosinolate content. Overall, the Asia No Rang Mini cultivar of Kimchi cabbage performed best as a promising cultivar hairy root culture for glucosinolate production.

Impact of Cooking Method on Bioactive Compound Content and Antioxidant Capacity of Cabbage (양배추 가공조건에 따른 생리활성 물질의 함량 및 항산화 활성)

  • Hwang, Eun-Sun;Thi, Nhuan Do
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.184-190
    • /
    • 2015
  • We evaluated the effects of three common cabbage cooking methods (blanching, steaming and microwaving) on glucosinolate and S-methylmethionine (SMM) content and total antioxidant capacity of cabbage leaves. We detected four glucosinolates, including glucoraphanin, sinigrin, glucobrassicin, and 4-methoxyglucobrassicin, by high-pressure liquid chromatography (HPLC). Cabbage contained high levels of SMM (192.85 mg/100 g dry weight), compared to other cruciferous vegetables. Blanching cabbage leaves for one to ten minutes decreased glucosinolate and SMM levels, whereas microwaving or steaming cabbage for 5-10 min preserved glucosinolate and SMM levels. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2-2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities of cooked cabbage generally decreased as cooking time increased, but microwave cooking had a smaller negative effect on antioxidant activities than blanching or steaming. This study demonstrates that some domestic cooking methods, such as microwaving and steaming, can increase the bioaccessibility of glucosinolates and SMM, highlighting the positive role of cooking on the nutritional qualities of cabbage.

Changes in Myrosinase Activity and Total Glucosinolate Levels in Korean Chinese Cabbages by Salting Conditions (배추 절임조건에 따른 Myrosinase 활성 및 Total Glucosinolates 함량 변화)

  • Hwang, Eun-Sun
    • Korean journal of food and cookery science
    • /
    • v.26 no.1
    • /
    • pp.104-109
    • /
    • 2010
  • Korean Chinese cabbage (Brassica campestris L. ssp. pekinensis) is one of the major cruciferous vegetables. Cruciferous vegetables contain a series of relatively unique secondary metabolites of amino acids called glucosinolates. Although glucosinolates do not appear to be bioactive, they are hydrolyzed by plant myrosinase when the cells in plants are damaged, and release biologically active compounds such as isothiocyanates, nitriles, and thiocyanates. The objective of this study was to determine the myrosinase activity and total glucosinolate levels of Korean Chinese cabbages by different salting times (0, 12, 18, and 24 h) and salt concentrations (6, 10, 14%). The total water content, salt content, and pH of brined cabbages decreased with increasing salting time. The myrosinase activity as determined by a glucose kit, decreased with increasing salting time and salt content. The total glucosinolates were purified using an anion exchange column and measured by UV-visible spectrophotometer. The fresh Korean Chinese cabbages contained $25.38{\pm}1.45\;{\mu}mol/g$ dry weight of glucosinolates. However, the total glucosinolates of brined cabbages decreased with increasing salting time and salt concentration. After 24 h of salting time, the total glucosinolates of brined cabbages rapidly decreased by $16.12{\pm}11.09$, $11.25{\pm}10.91$, $9.29{\pm}10.73\;{\mu}mol/g$ in 6%, 10%, and 14% salt solution, respectively. Overall, the total glucosinolate levels of Korean Chinese cabbages were found to vary inversely with salting time and salt concentration.

Elicitation of Indole-3-ylmethyl Glucosinolate Biosynthesis in Turnip Culture Cells and Their Relationship with Plant Resistance to Botrytis cinerea (잿빛곰팡이병 추출물을 이용한 순무배양세포의 Indole-3-ylmethyl glucosinolate의 생합성유도와 병원성연구)

  • Kwon, Soon Tae;Zhang, Vivian
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.542-548
    • /
    • 2017
  • Two different races of Botryris cinerea were selected by the response of plant leaves to the pathogen infection. Based on lesion size of the pathogen on the leaves, turnip showed susceptible response to 'Grape-01' race, and resistant to 'Orange' race. Turnip leaves infected with resistant pathogen race, "Orange", showed significantly higher content of indole-3-ylmethyl glucosinolate (I3M) than those infected with susceptible race, 'Grape-01'. Contents of I3M in the leaves with resistant 'Orange' race was 2.5 times as high as that in uninfected leaves, whereas I3M in the leaves infected with susceptible 'Grape-01' race showed lower content than in untreated leaves. Growth of turnip suspension cells was significantly inhibited by the treatment of MeOH extract or water extract of 'Orange' race as compared with the treatment of susceptible race, 'Grape-01'. Treatment of MeOH or water extract from 'Orange' race to turnip suspension cells, strongly inhibited cell viability up to 22.7% or 16.5%, respectively. However, plant cells treated with MeOH or water extract from resistant race, 'Orange' showed higher I3M content than that from susceptible race, 'Grape-01'. These results suggest that accumulation and degradation of I3M glucosinolate in turnip cells closely related to the resistance and susceptibility of turnip cells to Botrytis cinerea.

Extraction and Purification of Rapeseed Protein (유채박 단백질의 추출 및 정제에 관한 연구)

  • Lee, Jang-Soon;Kang, Dong-Sub;Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.780-785
    • /
    • 1990
  • In order to establish the effective extraction and purification process of rapeseed protein, the extraction solvents were compared with one another ; and the residues of glucosinolate and phytate and the extraction yield of protein, which had been extracted by 1% sodium hexa mata-phosphate(SHMP) and purified through isoelectric precipitation, acid-washing and UF concentration, were investigated. As for the condition for extraction of rapeseed proteins, the solvent of 1% SHMP(pH 8.0) turned out the most appropriate ; so far as the purification process for the elimination of glucosinolate and phytate was concerned, the acid-washing twice or the process of the acid-washing once and UF concentration was considered the most effective. The yield and content of rapeseed protein were 37.1% and 75.3% respectively in the case of the acid-washing twice, 42.1% and 72.4% respectively in the case of the acid-washing once and UF concentraction, Consequently, with the elimination effects of glucosinolate and phytate put into consideration, the process of isoelectric precipitation, acid-washing once(pH 3.5), neutralizing(pH 7.5), UF concentration and then freeze drying proved the most effective purification process.

  • PDF

Characterization of Phenotypic Traits and Evaluation of Glucosinolate Contents in Radish Germplasms (Raphanus sativus L.)

  • Kim, Bichsaem;Hur, Onsook;Lee, Jae-Eun;Assefa, Awraris Derbie;Ko, Ho-Cheol;Chung, Yun-Jo;Rhee, Ju-hee;Hahn, Bum-Soo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.575-599
    • /
    • 2021
  • The edible roots of radish (Raphanus sativus L.) are consumed worldwide. For characterization and evaluation of the agronomic traits and health-promoting chemicals in radish germplasms, new germplasm breeding materials need to be identified. The objectives of this study were to evaluate the phenotypic traits and glucosinolate contents of radish roots from 110 germplasms, by analyzing correlations between 10 quantitative phenotypic traits and the individual and total contents of five glucosinolates. Phenotypic characterization was performed based on descriptors from the UPOV and IBPGR, and glucosinolate contents were analyzed using liquid chromatography-tandem mass spectrometry in multiple reaction monitoring mode (MRM). Regarding the phenotypic traits, a significant correlation between leaf length and root weight was observed. Glucoraphasatin was the main glucosinolate, accounting for an average of 71% of the total glucosinolates in the germplasms; moreover, its content was significantly correlated with that of glucoerucin, its precursor. Principal component analysis indicated that the 110 germplasms could be divided into five groups based on their glucosinolate contents. High levels of free-radical scavenging activity (DPPH) were observed in red radishes. These results shed light on the beneficial traits that could be targeted by breeders, and could also promote diet diversification by demonstrating the health benefits of various germplasms.

Changes in Glucosinolate Content of Dolsan Leaf Mustard Kimchi during Fermentation and Correlation with Antioxidant, Antihypertensive, and Antidiabetic Activities (발효기간에 따른 돌산갓김치의 glucosinolates 함량변화와 항산화, 항고혈압 및 항당뇨활성과의 상관관계)

  • Oh, Sun-Kyung;Kim, Ki-Woong;Choi, Myeong-Rak
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1290-1300
    • /
    • 2018
  • The glucosinolate content, antioxidant activity, and antihypertensive and antidiabetic activities were measured in a crude extract of Dolsan leaf mustard kimchi (DLMK). The glucosinolate content was low at 6.41 and 7.92 mg/g in leaves and stems of DLMK after 21 days of fermentation. The total polyphenol and total flavonoid contents were more than 2 times higher in the leaves (211.7 mg GAE/g, 158.8 mg QE/g) than in the stem (53.7 mg GAE/g, 85.2 mg QE/g) during the fermentation period. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and electron donating ability (EDA) were similar to those of the control group after 14 days of fermentation, while the ferric reducing antioxidant power (FRAP) was higher in the leaves after 14 days of fermentation when compared to the control group. The angiotensin converting enzyme (ACE) inhibitory activity showed similar or higher inhibitory activity in the leaves when compared to the control group (0.01% captopril), and the ${\alpha}$-glucosidase inhibitory activity was higher in the leaves and stems when compared to the control group (0.05% acarbose). The glucosinolate content and the ABTS, ACE, and ${\alpha}$-glucosidase inhibitory activity were correlated, as determined by the observed straight line plot with a positive grade. During the fermentation period, the detected glucosinolates were sinigrin, glucobrasicin, glucotropeolin, and progoitrin. The DLMK extract is therefore expected to be valuable as a functional food because of its effective antioxidant, antihypertensive, and antidiabetic activities.

Effect of Glucosinolates of Taramira (Eruca Sativa) Oilcake on Nutrient Utilization and Growth of Crossbred Calves

  • Das, Srinibas;Tyagi, Amrish Kumar;Singhal, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.813-817
    • /
    • 2003
  • Taramira (Eruca sativa) cake, an unconventional oil cake, replaced 25 and 50 per cent crude protein of mustard cake in the ration of crossbred calves in an experiment of 90 days duration. Total glucosinolate content of the three concentrate mixture was almost similar (18.19, 17.95 and $17.95{\mu}mol/g$ dry matter), however, glucouracin was the major glucosinolate of experimental diets. Similar dry matter Intake, nutrient digestibility (except those of fibre fractions) and nitrogen balances as well as similar serum $T_3$ and $T_4$ levels and growth rate in all the groups indicated that taramira cake can replace 50 per cent crude protein of mustard cake in the diet of crossbred calves.

Glucosinolate Content Varies and Transcriptome Analysis in Different Kale Cultivars (Brassica oleracea var. acephala) Grown in a Vertical Farm (수직농장에서 자란 케일(Brassica oleracea var. acephala) 품종에 따른 글루코시놀레이트 함량의 변화 및 전사체 분석)

  • Nguyen, Thi Kim Loan;Lee, Ga Oun;Jo, Jung Su;Lee, Jun Gu;Lee, Shin-Woo;Son, Ki-Ho
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.332-342
    • /
    • 2022
  • Kale (Brassica oleracea var. acephala) is one of the most frequently consumed leafy vegetables globally, as it contains numerous nutrients; essential amino acids, phenolics, vitamins, and minerals, and is particularly rich in glucosinolates. However, the differences in the biosynthesis of glucosinolates and related gene expression among kale cultivars has been poorly reported. In this study, we investigated glucosinolates profile and content in three different kale cultivars, including green ('Man-Choo' and 'Mat-Jjang') and red kale ('Red-Curled') cultivars grown in a vertical farm, using transcriptomic and metabolomic analyses. The growth and development of the green kale cultivars were higher than those of the red kale cultivar at 6 weeks after cultivation. High-performance liquid chromatography (HPLC) analysis revealed five glucosinolates in the 'Man-Choo' cultivar, and four glucosinolates in the 'Mat-Jjang' and 'Red-Curled' cultivars. Glucobrassicin was the most predominant glucosinolate followed by gluconastrutiin in all the cultivars. In contrast, other glucosinolates were highly dependent to the genotypes. The highest total glucosinolates was found in the 'Red-Curled' cultivar, which followed by 'Man-Choo' and 'Mat-Jjang'. Based on transcriptome analysis, eight genes were involved in glucosinolate biosynthesis. The overall results suggest that the glucosinolate content and accumulation patterns differ according to the kale cultivar and differential expression of glucosinolate biosynthetic genes.