Browse > Article
http://dx.doi.org/10.12791/KSBEC.2022.31.4.332

Glucosinolate Content Varies and Transcriptome Analysis in Different Kale Cultivars (Brassica oleracea var. acephala) Grown in a Vertical Farm  

Nguyen, Thi Kim Loan (Division of Horticultural Science, Gyeongsang National University)
Lee, Ga Oun (Department of GreenBio Science, Gyeongsang National University)
Jo, Jung Su (Department of Horticultural Science, College of Agricultural & Life Science, Institute of Agricultural Science and Technology, Kyungpook National University)
Lee, Jun Gu (Department of Horticulture, College of Agriculture & Life Sciences, Jeonbuk National University)
Lee, Shin-Woo (Department of Plant & Biomaterials Science, Gyeongsang National University)
Son, Ki-Ho (Division of Horticultural Science, Department of GreenBio Science, Gyeongsang National University)
Publication Information
Journal of Bio-Environment Control / v.31, no.4, 2022 , pp. 332-342 More about this Journal
Abstract
Kale (Brassica oleracea var. acephala) is one of the most frequently consumed leafy vegetables globally, as it contains numerous nutrients; essential amino acids, phenolics, vitamins, and minerals, and is particularly rich in glucosinolates. However, the differences in the biosynthesis of glucosinolates and related gene expression among kale cultivars has been poorly reported. In this study, we investigated glucosinolates profile and content in three different kale cultivars, including green ('Man-Choo' and 'Mat-Jjang') and red kale ('Red-Curled') cultivars grown in a vertical farm, using transcriptomic and metabolomic analyses. The growth and development of the green kale cultivars were higher than those of the red kale cultivar at 6 weeks after cultivation. High-performance liquid chromatography (HPLC) analysis revealed five glucosinolates in the 'Man-Choo' cultivar, and four glucosinolates in the 'Mat-Jjang' and 'Red-Curled' cultivars. Glucobrassicin was the most predominant glucosinolate followed by gluconastrutiin in all the cultivars. In contrast, other glucosinolates were highly dependent to the genotypes. The highest total glucosinolates was found in the 'Red-Curled' cultivar, which followed by 'Man-Choo' and 'Mat-Jjang'. Based on transcriptome analysis, eight genes were involved in glucosinolate biosynthesis. The overall results suggest that the glucosinolate content and accumulation patterns differ according to the kale cultivar and differential expression of glucosinolate biosynthetic genes.
Keywords
glucosinolates; growth; kale; metabolome; transcriptome; vertical farms;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Grubb C.D., and S. Abel 2006, Glucosinolate metabolism and its control. Trends Plant Sci 11:89-100. doi:10.1016/j.tplants.2005.12.006   DOI
2 Ayaz F.A., R.H. Glew, M. Millson, H.S. Huang , L.T. Chuang, C. Sanz , and S. Hayirlioglu-Ayaz 2006, Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.). Food Chem 96:572-579. doi:10.1016/j.foodchem.2005.03.011   DOI
3 Lee H.H., S.C. Yang, M.K. Lee, D.K. Ryu, S. Park, S.O. Chung, S.U. Park, and S.J. Kim 2015, Effect of developmental stages on glucosinolate contents in kale (Brassica oleracea var. acephala). Hortic Sci Technol 33:177-185. (in Korean) doi:10.7235/hort.2015.14017   DOI
4 Sonderby I.E., F. Geu-Flores, and B.A. Halkier 2010, Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci 15:283-290. doi:10.1016/j.tplants.2010.02.005   DOI
5 Liu Z., A.H. Hirani, P.B.E. McVetty, F. Daayf, C.F. Quiros, and G. Li 2012, Reducing progoitrin and enriching glucoraphanin in Braasica napus seeds through silencing of the GSL-ALK gene family. Plant Mol Biol 79:179-189. doi:10.1007/s11103-012-9905-2   DOI
6 Waterland N.L., Y. Moon, J.C. Tou, D.A. Kopsell, M.J. Kim, and S. Park 2019, Differences in leaf color and stage of development at harvest influenced phytochemical content in three cultivars of kale (Brassica oleracea L. and B. napus). J Agric Sci 11:14-21. doi:10.5539/jas.v11n3p14   DOI
7 Yan X., and S. Chen 2007, Regulation of plant glucosinolate metabolism. Planta 226:1343-1352. doi:10.1007/s00425-007-0627-7.   DOI
8 Sawada Y., A. Kuwahara, M. Nagano, T. Narisawa, A. Sakata, K. Saito, and M. Y. Hirai 2009a, Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol 50:1181-1190. doi:10.1093/pcp/pcp079   DOI
9 Sawada Y., K. Toyooka, A. Kuwahara, A. Sakata, M. Nagano, K. Saito, and M.Y. Hirai 2009b, Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant Cell Physiol 50:1579-1586. doi:10.1093/pcp/pcp110   DOI
10 Smillie R.M., and S.E. Hetherington 1999, Photoabatement by anthocyanin shields photosynthetic systems from light stress. Photosynthetica 36:451-463. doi:10.1023/A:1007084321859   DOI
11 Jeon J., J.K. Kim, H. Kim H,Y.J. Kim, Y.J. Park, S.J. Kim, C.S. Kim, and S.U. Park 2018, Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings. Food Chem 241:7-13. doi:10.1016/j.foodchem.2017.08.067   DOI
12 Burger J., and G.E. Edwards 1996, Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf coleus varieties. Plant Cell Physiol 37:395-399. doi:10.1093/oxfordjournals.pcp.a028959   DOI
13 Naur P., B.L. Petersen, M.D. Mikkelsen, S. Bak, H. Rasmussen, C.E. Olsen, and B.A. Halkier 2003, CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63-72. doi:10.1104/pp.102.019240   DOI
14 Neugart S., S. Baldermann, F.S. Hanschen, R. Klopsch, M. Wiesner-Reinhold, and M. Schreiner 2018, The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci Hortic 233:460-478. doi:10.1016/j.scienta.2017.12.038   DOI
15 Nguyen T.K.L., and M.M. Oh 2021, Physiological and biochemical responses of green and red perilla to LED-based light. J Sci Food Agric 101:240-252. doi:10.1002/jsfa.10636   DOI
16 Mikkelsen M.D., P. Naur, and B.A. Halkier 2004, Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770-777. doi:10.1111/j.1365-313X.2004.02002.x   DOI
17 Bak S., and R. Feyereisen 2001, The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108-118. doi:10.1104/pp.127.1.108   DOI
18 Awasthi S., and N.T. Saraswathi 2016, Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: effect of methylglyoxal modification. J Biomol Struct Dyn 34:2224-2232. doi:10.1080/07391102.2015.1110835   DOI
19 Grubb C.D., B.J. Zipp, J. Ludwig-Muller, M.N. Masuno, T.F. Molinski, and S. Abel 2004, Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893-908. doi:10.1111/j.1365-313X.2004.02261.x   DOI
20 Hull A.K., R. Vij, and J.L. Celenza 2000, Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci 97:2379-2384. doi:10.1073/pnas.040569997   DOI
21 Kim K.H., and S.O. Chung 2018, Comparison of plant growth and glucosinolates of Chinese cabbage and kale crops under three cultivation conditions. J Biosyst Eng 43:30-36. doi:10.5307/JBE.2018.43.1.030   DOI
22 Kozai T. 2013, Sustainable plant factory: Closed plant production systems with artificial light for high resource use efficiencies and quality produce. Acta Hortic 1004:27-40. doi:10.17660/ActaHortic.2013.1004.2   DOI
23 Piotrowski M., A. Schemenewitz, A. Lopukhina, A. Muller, T. Janowitz, E.W. Weiler, and C. Oecking 2004, Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717-50725. doi:10.1074/jbc.M407681200   DOI
24 Jahangir M., H.K. Kim, Y.H. Choi, and R. Verpoorte 2009, Health-affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf 8:31-43. doi:10.1111/j.1541-4337.2008.00065.x   DOI
25 Lannenpaa M. 2014, Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. Plant Cell Rep 33:1377-1388. doi:10.1007/s00299-014-1623-6   DOI
26 Grubb C.D., B.J. Zipp, J. Kopycki, M. Schubert, M. Quint, E. K. Lim, D.J. Bowles, M.S.C. Pedras, and S. Abel 2014, Comparative analysis of Arabidopsis UGT 74 glucosyltransferases reveals a special role of UGT 74C1 in glucosinolate biosynthesis. Plant J 79:92-105. doi:10.1111/tpj.12541   DOI
27 Lee G.J, J.W. Heo, C.R. Jung, H.H. Kim, J.S. Jo, J.G. Lee, G.J. Lee, S.Y. Nam, and E.Y. Hong 2016, Effects of artificial light sources on growth and glucosinolate contents of hydroponically grown kale in plant factory. Protected Hort Plant Fac 25:77-82. (in Korean) doi:10.12791/KSBEC.2016.25.2.77   DOI
28 Palani K., B. Harbaum-Piayda, D. Meske, J.K. Keppler, W. Bockelmann, K.J. Heller, and K. Schwarz 2016, Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem 190:755-762. doi:10.1016/j.foodchem.2015.06.012   DOI
29 Herr I., and M.W. Buchler 2010, Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377-383. doi:10.1016/j.ctrv.2010.01.002   DOI
30 Lu N., E.L. Bernardo, C. Tippayadarapanich, M. Takagaki, N. Kagawa, and W. Yamori 2017, Growth and accumulation of secondary metabolites in perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Front Plant Sci 8:708. doi:10.3389/fpls.2017.00708   DOI
31 Mayne S.T. 1996, Beta-carotene, carotenoids, and disease prevention in humans. FASEB J 10:690-701. doi:10.1096/fasebj.10.7.8635686   DOI
32 Mikkelsen M.D., C.H. Hansen, U. Wittstock, B.A. Halkier 2000, Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712-33717. doi:10.1074/jbc.M001667200   DOI
33 Yi G.E., A.H.K. Robin, K. Yang, J.I. Park, J.G. Kang, T.J. Yang, and I.S. Nou 2015, Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies. Molecules 20:13089-13111. doi:10.3390/molecules200713089   DOI