• Title/Summary/Keyword: glucose uptake activity

Search Result 132, Processing Time 0.026 seconds

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo;Tang, Mingyu;Zhang, Yuming;Li, Yansong;Mao, Jingdong;Deng, Qinghua;Li, Shusen;Jia, Zhenwei;Du, Liyin
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.76.1-76.14
    • /
    • 2022
  • Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.

Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes (사람 암세포와 단핵세포에서 고포도당 농도에 의한 FDG 섭취 저하의 서로 다른 기전)

  • Kim, Chae-Kyun;Chung, June-Key;Lee, Yong-Jin;Hong, Mee-Kyoung;Jeong, Jae-Min;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.110-120
    • /
    • 2002
  • To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied $[^{18}F]$ fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5 - 10.8 mU/mg), while SNU-C5 and monocytes showed lower range of hexokinase activity (4.3 - 6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

Effects of Extracellular Calcium and Starvation on Biochemical Indices of the Rat Hepatocytes

  • Kim, Ki-Sung
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.199-203
    • /
    • 1995
  • The focus of this study was to investigate that cellular parameters and glucose uptake might be altered by extracellular calcium and starvation. Addition of 1 mM $Ca^{++}$ to hepatocytes (equalling to the free calcium concentration of blood) significantly increased intracellular $Na^+$ and decreased $Na^+$ & LDH leakage. This pertains to the hepatocytes of control rats as well as those of rats fasted for 24 and 48. hr. These effects might be come from the membrane-stabilizing effects of calcium. But calcium had no effects on cell volumes, superoxide-formation and glucose uptake. Actually hepatocytes of starved rats showed changes in several cellular parameters. Starvation increased LDH leakage, glucose uptake and the total concentration of $Na^+$ and $Na^+$ whereas it markedly decreased cell volumes. Since total tonicity remained unchanged, intracellular $Na^+$ and $Na^+$ could contribute to a higher share of total osmolarity in starvation. Starvation increased the cytoplasmic pH because $R-NH^{3+}$ions and their corresponding counterions disappeared. This increase may be related to suppress the protonization of amino groups in proteins. Starvation decreased hepatic glycogen, a major compound that affects cytosolic volume of hepatocytes. The data indicate that starvation increases the glucose transport activity. The possible molecular basis will be discussed.

  • PDF

Determination of Glycyrrhizic Acid Content and Anti-Diabetic Effect of Glycyrrhiza uralensis Depending on Cultivation Region (재배지역별 감초의 Glycyrrhizic Acid 함량 분석과 항당뇨 효능 평가)

  • Jang, Da Eun;Song, Jin;Hwang, In Guk;Lee, Sang Hoon;Choe, Jeong-Sook;Hwang, Kyung-A
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.1
    • /
    • pp.39-45
    • /
    • 2017
  • This study investigated the glycyrrhizic acid content and anti-diabetic activities of Glycyrrhiza uralensis (GU) depending on the cultivation region (Jecheon, Youngju, Gokseong, China, and Uzbekistan). Glycyrrhizic acid accuracy recovery and intra- and inter-day precisions (RSD%) of the method were calculated at 99.10~107.07% and 3.92 and 6.31% for GU samples, respectively, whereas the limits of detection and quantitation were 0.14 and $0.20{\mu}g/mL$. Anti-diabetic activity was measured by ${\alpha}-glucosidase$ and glucose uptake. GU (20 g) was extracted with 70% ethanol at $70^{\circ}C$ for 6 h. The Jecheon and Gokseong GU showed good inhibitory activity compared to the control. The Jecheon, Youngju, and Uzbekistan GU ethanol extracts ($100{\mu}g/mL$) showed glucose uptakes (in $C_2C_{12}$ myotube) of 124.19, 127.18, and 126.92%, respectively, compared to the positive control. In conclusion, these methods were validated for detection of glycyrrhizic acid in GU, and the results indicate that GU might have potential anti-diabetic activities.

Effect of a New Hepatoprotective Agent, YH-439, on the Hepatobiliary Transport of Organic Cations (OCs): Selective Inhibition of Sinusoidal OCs Uptake without Influencing Glucose Uptake and Canalicular OCs Excretion

  • Hong Soon Sun;Li Hong;Choi Min Koo;Chung Suk Jae;Shim Chang Koo
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.330-334
    • /
    • 2005
  • The effect of a new hepatoprotective agent, YH-439, on the hepatobiliary transport of a model organic cation (OC), TBuMA (tributylmethylammonium), was investigated. The area under the plasma concentration-time curve (AUC) from time zero to 4 h following iv administration of TBuMA (6.6 $\mu$mol/kg) was increased significantly when YH-439 in corn oil (300 mg/kg) was orally administered to rats 24 h prior to the experiment. Nevertheless, the cumulative biliary excretion of TBuMA remained unchanged. As a consequence, the apparent biliary clearance ($CL_b$) of TBuMA was decreased significantly as a result of YH-439 pretreatment, consistent with the fact that the in vivo excretion clearance of TBuMA across the canalicular membrane ($CL_{exc}$) was not changed by the pretreatment. The in vitro uptake of TBuMA into isolated hepatocytes was decreased by one half by the pretreatment, owing to a decrease in the apparent V$_{max}$ and $CL_{linear}$, but the $K_m$ for the process remained constant. Most interestingly, however, the sinusoidal uptake of glucose, a nutrient, into hepatocytes was not influenced by the pretreatment, suggesting the YH-439 pretreatment specifically impaired the sinusoidal uptake of OCs. Thus, the OC-specific inhibition of hepatic uptake, without influencing the uptake of glucose, a nutrient, appeared to be associated with the hepatoprotective activity of YH-439.

Effects of Pentoses on 2-deoxy-D-Glucose Transport of the Endogenous Sugar Transport Systems in Spodoptera frugiperda Clone 9 Cells

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • Insect cells such as Spodoptera frugiperda Clone 9 (Sf9) cells are widely chosen as the host for heterologous expression of a mammalian sugar transport protein using the baculovirus expression system. Characterization of the expressed protein is expected to include assay of its function, including its ability to transport sugars and to bind inhibitory ligands such as cytochalasin B. It is therefore very important first to establish the transport characteristics and other properties of the endogenous sugar transport proteins of the host insect cells. However, very little is known of the transport characteristics of Sf9 cells, although their ability to grow on TC-100 medium strongly suggested the presence of endogenous glucose transport system. In order to investigate the substrate and inhibitor recognition properties of the Sf9 cell transporter, the ability of pentoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. To determine the time period over which of sugar into the Sf cells was linear, the uptake of 2dGlc 0.1mM extracellular concentration was measured over periods ranging from 30 seconds to 30 minutes. The uptake was linear for at least 2 minutes at the concentration, implying that uptake made over a 1 minute time course would reflect initial rates of the sugar uptake. The data have also revealed the existence of a saturable transport system for pentose uptake by the insect cells. The transport was inhibited by D-xylose and D-ribose, although not as effective as hexoses. However, L-xylose had a little effect on 2dGlc transport in the Sf9 cells, indicating that the transport is stereoselective. Unlike the human erythrocyte-type glucose transport system, D-ribose had a somewhat greater apparent affinity for the Sf9 cell transporter than D-xylose. It is therefore concluded that Sf9 cells contain an endogenous sugar transport activity that in some aspects resembled the human erythrocyte-type counterpart, although the Sf9 and human transport systems do differ in their affinity for cytochalasin B.

  • PDF

Effects of Acanthopanax senticosus Water Extract on Glucose-Regulating Mechanisms in HepG2 Cells (가시오갈피 물 추출물이 간세포에서 포도당 이용 대사에 미치는 영향)

  • Kim, Dae-Jung;Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Park, Jae Bong;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.552-561
    • /
    • 2017
  • This study aimed to investigate glucose uptake mechanisms and metabolic mechanisms for absorbed glucose in HepG2 cells treated with Acanthopanax senticosus water extract (ASW). A colorimetric assay kit was used to measure polyphenol content, glucokinase (GK) activity, glucose uptake, glucose consumption in cell culture medium, and glycogen content. RT-PCR and western blotting were performed to examine changes in the expression levels of glucose transporter 2 (GLUT2), hepatocyte nuclear factor $1{\alpha}$ ($HNF-1{\alpha}$), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phospho-AMP-activated protein kinase (AMPK), phosphoenolpyruvate carboxykinase, GK, and glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$). Increased glucose uptake upon ASW treatment was confirmed to result from increased expression of $HNF-1{\alpha}$, which is one of the transcription factors acting on the GLUT2 promoter. From the measurements of GK activity, we observed that ASW had an effect on glucose phosphorylation, and we also confirmed that increased AMPK phosphorylation promoted glycolysis and suppressed gluconeogenesis. We confirmed that the increase in glycogen upon ASW treatment was induced by activation of Akt by PI3k, followed by phosphorylation of $GSK3{\beta}$. This study demonstrates that ASW activates glucose metabolic mechanisms in liver cells and is therefore a potential candidate to alleviate diabetes.

The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo

  • Park, Soo-Jeung;Lee, Dasom;Kim, Dakyung;Lee, Minhee;In, Gyo;Han, Sung-Tai;Kim, Sung Won;Lee, Mi-Hyang;Kim, Ok-Kyung;Lee, Jeongmin
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.362-372
    • /
    • 2020
  • Background: The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods: We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results: KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion: Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.

Studies on the Cellular Metabolism in Microorganisms as Influenced by Gamma-irradiation.(II) - On the Respiration Rate and Dehydrogenase Actibity in Yeast Cells Irradiated by $\gamma$-ray. (미생물의 세포생리에 미치는 전이방사선의 영향에 관한 연구 (제 2보) - 효모균의 산소호흡기및 탈수소효소능에 대한 $\gamma$-ray 의 영향)

  • 김종협
    • Korean Journal of Microbiology
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 1967
  • Kim, Jong Hyup, (Div. of Biology, Atomic Energy Research Institute.) Studies on the Cellular Metabolism in Microorganisms as influenced by Gamma-irradiation(II). On respiration rate and dehydrogenase activity of yeast cells irradiated by gamma ray from cobalt-60. 1. Oxygen uptake rate of the gamma irraiated yeast cells had been measured with Warburg's manometer, and the $O_{2}$-uptake was compared with those of normal cells. The rate of endogetious respiration increases in its $O_2$-uptake at 150, 000 rentgen dose, and at higher rentoen doses it was decreased. Exogenous respiration begin to decrease in its O_2$-uptake at 5, 000r. doses of irradiation, further decrease with increasing of doses unproportionally. 2. It appears that plasma-membrane and nuclear membrane of yeast cells have changed and denatured by gamma-irradiation, as exogenous respiration of glucose had been decreased at a dose of 200, 000r's irradiation. 3. The activity of glucose, alcoholic, lactic, succinic and glutamic deliydrogenase (G.D.H., A.D.H., L.D.H., S.D.11., and GL.D.H.) in the gamma irradaited cells had been assayed by T.T.C.(Triphenyl tetrazolium chloride) method and spectrophotometry, the obtained results were compared with those of normal cells. 4. At a dose of and 10, 000 rentgens' irradiation of gamma ray, the activty of each debydrogenase (G.D.H., A.D.H., L.D.H., ) shows a sharp and highest peak in optical absorbalicy, but each abtivity of S.D.H and Gl.D.H shows its' maximum peak at a dose of 30, 000r. 5. The curve of each dehydrogenase activity was found to be rhythmical according to dose-rate of gamma irradiation. 6. Comparing with activity of debydrogenase each other, the maximum peak in optical absorbency can be arranged according to order as follows; glucose > alcoholoic > lactic > glutamic > succinic, this order is identical to the order of breakdown utility in respiration of normal yeast cells. 7. The activity of dehydrogenase experimented exhibit a resistance against gamma irradiation at lethal dose of cells, and the activity of dehydrogenase are found to be much resistant than those of respiratory system. We may assume that the membrane substrate of mitochondria or cytoplasm had been destructed by gamma-irradiation much more than that of dehydronase system.

  • PDF

Effect of Ginseng Components (Ginsenosides and Fat Soluble Fraction) on Rat Liver Glucokinase Activity (쥐의 간 Glucokinase 활성에 미치는 인삼 성분의 영향)

  • 주충노;김선진
    • Journal of Ginseng Research
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Effect of ginsenoside mixture, ginsenoside $Rb_1$,$Rb_2$,$Rg_1$ and the fat soluble fraction of the roots of Panax ginseng C.A. Meyer on the activity of glucokinase (GK) in vitro has been observed and found that GK activity was increased about 15c1c at the concentration of ginsenoside mixture and/or the fat soluble fraction being $10^{-7}$,$10^{-5}$%. It was also observed that glucose uptake by rat liver was increased in the presence of either ginsenoside mixture or the fat soluble fraction by perfusion technique. Ginsenoside mixture stimulated various enzymes related to glucose metabolism, however, both ginsenoside mixture and the fat soluble fraction did not stimulate GK activity as expected. Primary culture of liver cells showed that the ginsenoside mixture and the fat soluble fraction increased GK activity significantly and they stimulated the GK activity synergistically in the co-presence of insulin.

  • PDF