J. Exp. Biomed. Sci. 15 (2009) 55-60

Effects of Pentoses on 2-deoxy-D-Glucose Transport of the Endogenous
Sugar Transport Systems in Spodoptera frugiperda Clone 9 Cells
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Insect cells such as Spodoptera frugiperda Clone 9 (Sf9) cells are widely chosen as the host for heterologous
expression of a mammalian sugar transport protein using the baculovirus expression system. Characterization of the
expressed protein is expected to include assay of its function, including its ability to transport sugars and to bind
inhibitory ligands such as cytochalasin B. Tt is therefore very important first to establish the transport characteristics and
other properties of the endogenous sugar transport proteins of the host insect cells. However, very little is known of the
transport characteristics of Sf9 cells, although their ability to grow on TC-100 medium strongly suggested the presence
of endogenous glucose transport system. In order to investigate the substrate and inhibitor recognition properties of the
S19 cell transporter, the ability of pentoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring
inhibition constants (K3). To determine the time period over which of sugar into the Sf cells was linear, the uptake of
2dGlc 0.1 mM extracellular concentration was measured over periods ranging from 30 seconds to 30 minutes. The
uptake was linear for at least 2 minutes at the concentration, implying that uptake made over a 1 minute time course
would reflect initial rates of the sugar uptake. The data have also revealed the existence of a saturable transport system
for pentose uptake by the insect cells. The transport was inhibited by D-xylose and D-ribose, although not as effective as
hexoses. However, L-xylose had a little effect on 2dGlc transport in the Sf9 cells, indicating that the transport is
stereoselective. Unlike the human erythrocyte-type glucose transport system, D-ribose had a somewhat greater apparent
affinity for the Sf9 cell transporter than D-xylose. It is therefore concluded that Sf9 cells contain an endogenous sugar
transport activity that in some aspects resembled the human erythrocyte-type counterpart, although the Sf9 and human
transport systems do differ in their affinity for cytochalasin B.
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1. Sf9 M=E2| i

T ELe] B2 Summers®}t Smith (1987)2] HHS
WP ste] vl FEIT) SO ME] wjokl o 7= TC-100

medium (Gibco)oll 10% FCS, 1% &34 (penicillin 5,000
units/ml + streptomycin 5,000 pg/ml, Gibco-BRLYE 713}
o AMgEkiTh A AliEl 2 monolayer B4 Al o]
Folgon, F& 27~28TlA CO,%t0] vi%katitt Al
¥ FA SR+ 0.1 ml trypan blue (0.4% stock, pH 3.0)2
1 ml AX H7lete] dn7 ofefx] #23te o] &3t
St

2. Sf9 M Z2] membrane preparation

Z53] vjkd S M EZHE Q] membrane R A
A7 S o] 83T (Lee, 2005). T2 I 4~5
4 5 A%k Al HE AIH Y (10 mM-sodium phosphate/
150 mM-NaCl, pH 7.2)2.2 A& ¥ protease inhibitors [(2
mM-iodoacetamide, 0.2 mM-phenylmethanesulphonyl fluoride,
pepstatin A (10 g/mhJE< FHHshe F4Y (10 mM-Tris/5
mM-MgCl,, pH 7.4)2.2 0°Col| A, 157} sonicationdt3t}.
2 Fof 1AZF B9t 117,000 g, = 94 E2lEhe] soluble

fraction ©. 2 5B membrane fractions 2|33}

M

o

3. Cytochalasin B binding assay

Sf9 A2l UA}3t= glucose transporter(s)E ¢+ func-
tional assay=A] cytochalasin B bindingS 745} th,
Zoceoli (1978) 5 ol we} BPFEAY (equilibrium
dialysis) ©. % %5 40 nM®] [4-°H] cytochalasin BE A&}
o SA83I

4. Sugar transport assay

D-glucose uptakeS 5743}7] 9138} transport assay: %
of Buw WHE o] 833t (Lee, 2005). THeH3] 2ok
shd, Sf9 MIE2] 2-(1,2-°H)-deoxy-D-glucose (30.2 Ci/mmol,
2dGle) uptake] AA| S <A SO MEE F W
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mM NaCl, pH 74) 0.2 ZZHEE Rof, wjokl Lof b
e =S AAS e 288 o 7] dSol By
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x10° cells/ml PBS)S 6,000 x gol A 15% 52 44
gk Fol MEE 150 ple] PBS 8ol ThA] HEA
28Col A 287+ vl 43t T). Transports HEF 9
1 mM F7] $13)] 1 uCi tritiated sugarE H13l= 2.5 mM
2dGle 100 plg H7Febd A AZFE AL, 28Tl A 183
Wi & AL XA 3 1 ml stop solutions 37}k
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Fig. 1. Time course of 2-deoxy-D-glucose uptake by Sf9 cells
from a low extracellular concentration of sugar. Transport was
carried out in the presence of 100 puM 2dGlc, as described in
Materials and Methods. After the times indicated, uptake was
terminated and the radioactivity accumulated was determined by
scintillation counting. Each data point on the graph represents the
mean of triplicate estimations. The data was corrected for the zero
time uptake and converted into pmol/min/10° cells. The data points
representing for some time intervals (9~29 min) were omitted for
convenience.

TRA AEES fof 22 WHoew T ¥ o Xl
S0l 10% SDS 200 woll vortexing 3t &35kl vl
o R 150 wel &31%F AEE Microman pipetteE ©] &
&t 4 ml®| scintillant §-9o] @71 &7 Y1 liquid
scintillation counter (Beckman)E ©]-&3}e] WhralsS =3
QI RE ARES A W 5429 (HaRT 10%
ojgte] zfo]y Hghko 2 TSI ch

SO AT & TF 54 21,2 °H)-deoxy-D-glucose
(2dGleyE AHgsted 1237 FA4 8 Th Fig 1914 2 &

Aol Holk 28 Fehe & uptakeﬂ linear é}Oﬂu} s
S 3
H

d
7] A3 &5 e &S 4 »lr/}. oleldt 4
I Aol Bug sf21 Az Wl 2dGled] FYol &
extracellular 3 =AM E Holx 287H2 lineardHS Ko
= A3 ARBATH (Lee, 2005). A1 erythrocyte-type
ToG 2EAe 78 Eolge ulmA & odex g
O™ apparent affinity”} 7} £ 32 2dGle, D-glucose,
D-mannose, D-galactose, D-xylose, L-glucose 52] <=o]t}h
(LeFevre, 1961). o]} ®bdol| Sf9 L&A Fol WAste
g FEA 71dH AR A 2] ol e H

2.3 ¥} )& hexoseol tigh affinity Z=A) (Lee, 2005)
e H2 4z ‘3}7} 2t} 53] D-xylose} D-ribose
2 pentose®l] TN ZHAE & F4A9] substrate 5-©]
off iaiAe M3 &eixl vbrh ok webA S A
X9 & FEA7F olF pentosedl] Dhall 7HAE affinity S
Sf9 M FE 2] 2dGle transportE & A SH= pentose?] T EH-S

E4%to 2 AL 22 71 (2dGle)e] AREo
2 7zt ol thgh apparent K= AH8-H pentose] T

affinity A28 AT 5 ATE 2HER B AT
A1 D-glucose2] homomorph$! D-xylose$} mirror-image
enantimorph?] L-xylose, D-riboseE ]88} ©]& pentose
7} 8f9 A|E2] 2dGle transportel] P A= 43S inhibition
constants (K)5 ST 22N ZARISIT (Fig. 2~4).
Transport assay— A5 2 WHolA AFSh= 4
SHE T 42 Sf9 A3 radiolabeled substrateE §H-7-5F

100 pl PBS S8} HAH3 Fro) JAAE Higoz

A AT S 18 T SNl o] WAk
& 5459 Y. 2dGle uptakeol] tigh HAAR o AA <]
T ohe A ofs] A Eold 5 glrk
Vs * S
Vp= -mmmmmmeoemeeoee e +M-S )

Kn (1 +T/K)+S

V;=inhibitor <A s}l A uptake HE, Vi (the maxi-
mum velocity), S=7]2 &%, M=uptake process2] non-
saturable componentE: 4™ 3} A<, K, (the half-saturation
concentration), 1= inhibitor %=, K;=inhibition *5=0]
transport®ll &+ K, 7} ¥, non-linear regression program
91 NZFITTER (Cambridge, UK)E AH&3l] H7}slsic).
7} % A A (reversible inhibitors)S 2] K= 5ol o
g AAA sE9] plotsell A AN ™ Fig. 2~4% 7}
AA A gk dlojHe] HES st WHAA ()
gt HAo] a2z Eolth oefdk A WRHoE Algd
pentose D-xylose™ K7} 2851032 mME ZFHE & F
%7 2] D-galactose®l] T3t apparent affinity (Lee, 2005) ¥.
U oA 245U (Fig 2). 0] D-xylose2] apparent
affinity”} D-galactose EtF W2 Al erythtocyte-type
T % AAt FA S YERIAT (LeFevre, 1961).
TS Lxylose (K;=41.51£0.23 mM, Fig. 4= D-xylose®H=
2] Sf9 Al¥E 2] 2dGle transportd]] 2 G2 FX| Fa}
stk meEka] st TEAY 5 ALE erythrocyte-
type & TE5ANHH (LeFevre, 1961) &2 D-stercoisomer
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Fig. 2. Effect of D-xylose on 2-deoxy-D-glucose transport in
S19 cells. Transport assay was carried out essentially as described
in Materials and Methods. Transport was initiated by the addition
of 100 pl of PBS buffer containing ["H]2dGlc and an appropriate
concentration of D-xylose. After 1 min, the transport was terminated
by addition of ice-cold stop solution. Cells were then solubilized
and radioactivity was determined as described in Materials and
Methods. The data were analyzed with the help of a non-linear
regression program. The curve represents the best-fit of the data to
equation (1). Each data point represents the mean of triplicates.
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Fig. 4. Effect of L-xylose on 2-deoxy-D-glucose transport in
Sf9 cells. Transport assay was carried out essentially as described
in Materials and Methods. The ability of L-xylose to inhibit the
uptake of 2dGlc was determined as described in the legend to Fig.
2. The curve represents the best fit of the data to equation (1). Each
data point is the mean of triplicate estimations.

Table 1. Cytochalasin B binding to Sf9 cell membranes

Cytochalasin B (B/F)
=) 6D *Specific
Sample (1 mg/ml) D-Glucose  D-Glucose B/F
3.0 S9 cell membranes 0.049 0.047 0.002
— Erythrocyte membranes 8.025 0374 7.876
@
¢3 25 Membranes of Sf9 cells were prepared as described in the Materials
£Y and Methods. The assay for cytochalasin B binding activity of
2= 20 membrane samples was performed by equilibrium dialysis using
o E 40 nM-[*H]cytochalasin B, in the absence (-) or presence (1) of
T 15 400 mM D-glucose, as described in Zoccoli et al. (1978). Cyto-
% = chalasin B binding activity (*) was calculated as described pre-
= £ 10 viously (Gorga and Lienhard, 1981). B/F = [bound cytochalasin
-8 B]/ [free cytochalasin B].
T o5}
ool ] by oS B affiniyS BT WA Pl CI
0 30 60 90 120 150 180

[D-ribose] mM

Fig. 3. Effect of D-ribose on 2-deoxy-D-glucose transport in
Sf9 cells. Transport assay was carried out essentially as described
in Materials and Methods. The ability of D-ribose to inhibit the
uptake of 2dGlc was determined as described in the legend to Fig,
2. The curve represents the best fit of the data to equation (1). Each
data point is the mean of triplicate estimations.

of tial 53] A3 Soldg HelFa gtk o] Al
erythrocyte-type 3 53] 712 affinityoll A 2 5= 9l
=©°] Cl conformation®] axial substituents”} D-glucose2}
D-xylosedl A4 E A28 =2 affinityE 7R
Ao = HIY} (LeFevre, 1961). WrAol mirror-image L-
glucose®t L-xyloset= WFHEEIQ] 1C formoll A 433

conformationl| Al F7}eh= A HHAAS M o, &
7k affinityE 7HAE AHAAE HERH ol &
%A 9] 714l 3} affinity®l]l Cl conformation©] w-$-
2% 938 st s BAFa vk ey SP
43 2] Dribose?] K (24.5£0.27 mM)E D-xylose
o] thgt apparent affinity LU= ThA o} (Fig. 3) AFE
erythrocyte-type & 7539 714 <14 A= (LeFevre,
1961) zFo]H& EAT

Cytochalasin B¥= Al A7y o £5A¢ 72eg
(K= 0.12 pM) A Ao] T} (Baldwin et al., 1982). SO A
ol WA= sugar transport system®| fimctional assayZ
X1 cytochalasin B bindingS 43Itk Table 10 UEht
ulel o] sf9 A|EL 2] specific B/F, & Bound cytochalasin

OXL ofN
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T} (Gorga and Lienhard, 1981; Baldwin et al., 1982). W-2}A]
Zoccoli 5 (1978)2] HFA] W (equilibrium dialysis)
£ o] &3] BE 40 nM2 [4-°H] cytochalasin BE AL&
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