Browse > Article

Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes  

Kim, Chae-Kyun (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine)
Chung, June-Key (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine)
Lee, Yong-Jin (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine)
Hong, Mee-Kyoung (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine)
Jeong, Jae-Min (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine)
Lee, Dong-Soo (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine)
Lee, Myung-Chul (Department of Nuclear Medicine, Cancer Research Institute Seoul National University College of Medicine)
Publication Information
The Korean Journal of Nuclear Medicine / v.36, no.2, 2002 , pp. 110-120 More about this Journal
Abstract
To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied $[^{18}F]$ fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5 - 10.8 mU/mg), while SNU-C5 and monocytes showed lower range of hexokinase activity (4.3 - 6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.
Keywords
Inflammatory cells; cancer; glucose; F-18-fluorodeoxyglucose; hyperglycemia; glucose transporter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Reske S. N., Grillenberger K. G., Glatting G.,Port M., Hildebrandt M., Gansauge F. and BegerH-G. Over expression of glucose transporter 1and increased FDG uptake in pancreatic carcinoma.J Nucl Med 1997;38:1344-1348 .
2 Wahl R. L., Henry C. A. and Ethier S. P. Serumglucose: Effects on tumor and normal tissueaccumulation of 2-[F-18]-fluoro-2-deoxy-D-glucosein rodents with mammary carcinoma. Radiology1992;183:643-647.
3 Ichiya Y., Kuwabara Y., Sasaki M., Yoshida T., Omagari J., Akash Y., Kawashima A., Fukumura T. and Masuda K. FDG-PET in infectious lesions: the detection and assessment of lesion activity. Ann Nucl Med 1996;10:185-191.
4 Waki A., Kato H., Yano R., Sadato N.,Yokoyama A., Ishii Y., Yonekura Y. andFujibayashi A. The importance of glucosetransport activity as the rate-limiting step of2-deoxyglucose uptake in tumor cells in vivo.Nucl Med Bioi 1998;25:593-597.
5 Grobholz R, Hacker H. and Thorens B.Reduction in the expression of glucosetransporter protein GLUT2 in preneoplastic andneoplastic lesions and reexpression of GLUTI inlate stages of hepatocarcinogenesis. Cancer Res1993;53:4204-4211.
6 Torizuka T., Clavo A. C. and Whal R L. Invitro study of PET tumor tracers at normal andelevated media glucose levels. J Nucl MedSuppl 1996;37:64p.
7 Asano T., Shibasaki Y., Lin J-J., Tsukuda K.,Katagiri H., Ishihara H., Yazaki Y. and Oka Y.Expression of GLUTl glucose transporterincreases thymidine uptake in Chinese hamsterovary cells at low glucose concentrations.Cancer Res 1991; 51:4450-4454.
8 Haspel H. C., Wilk E. W., Birnbaum M. J.,Cusshman S. w., Rosen O. M Glucose deprivationand hexokinase transporter polypeptides ofmurine fibroblasts. J Biol Chem 1986;261:6778-6789.
9 Glick R., Unterman T. and Lacson RIdentification of insulin-like growth factor (lGF)and glucose transporter 1 and 3 mRNA in CNStumors. Regul Pept 1993;48:251-256.
10 Malide D., Davies-Hill T. M., Levine M. andSimpson 1. A. Distinct localization of GLUT-I,-3, and -5 in human monocyte-derivativemacrophages: effects of cell activation. Am JPhysiol 1998;74:E5l6-526.
11 Gallagher B. M., Fowler J. S., Gutterson N. I.,McGregor R R, Wan C. N. and Wolf A. P.Metabolic trapping as a principle of radiopharmaceuticaldesign: Some factors responsible forthe biodistribution of [18F]2-deoxy-2-D-glucose.J NuclMed 1978;19:1154-1161.
12 Chung I-K., Lee Y. I., Kim c., Choi S. R, KimM., Lee K. L., Ieong J. M., Lee D. S., langI-I., and Lee M. C. Mechanisms related to[18F]fluorodeoxyglucose uptake of human coloncancers transplanted in nude mice. J Nucl Med1999;40:339-346.
13 Kubota R., Yamada S., Kubota K., Ishiwata K.,Tarnahashi N. and Ido T. Intratumoral distributionof Flurine-18-fluorodeoxyglucose in vivo: highaccumulation in macrophages and granulationtissues studied by autoradiography. J Nucl Med1992;33: 1972-1980.
14 Monakhov N. K., Neistadt E. L. and Shavlovskii M. M. Physicochemical properties and isozyme composition of hexokinase from normal andmalignant human tissues. J Natl Cancer Inst 1978;61:27-34.
15 Fukuzumi M., Shinomiya H., Shimizu Y., OhishiK. and Utsumi S. Endotoxin-induced enhancementof glucose influx into murine peritonealmacrophages via GLUT 1. Infect Immunol1996;64:108-112.
16 Gamelli RL., Liu H., He L.K. and HofmannC.A. Augmentation of glucose uptake andglucose transporter-I in macrophages followingthermal injury and sepsis in mice. J Leukoc Bioi1996;59:639-647.
17 Mellanen P., Minn H. and Grenman RExpression of glucose transporters in head-andneck tumors. Int J Cancer 1992;56:622-629.
18 Haberkorn U., Ziegler S. I., Oberdorfer F., TrojanH., Haag D., Peschke P., Berger M., Altmann A.and Kaick G. V. FDG uptake, tumor proliferationand expression of glycolysis associated genes inanimal tumor models. Nucl Med Bioi 1994;21:827-834.
19 Flier J. S., Mueckler M., McCall A. L. and Lodish H. F. Distribution of glucose transporter messenger RNA transcripts in tissues in rat and man. J Clin Invest 1987;79:657-661.
20 Barghouthi S., Everett K. D. E. and Speert D. P.Nonopsonic phagocytosis of Pseudomonasaeruginosa requires facilitated transport ofD-glucose by macrophages. J Immunol 1995;154:3420-3428.
21 Hoh C., Schiepers C., Seltzer M. A., Gambhir S.S., Silverman D. H. S., Czemin 1., Maddahi J.and Phelps M.E. PET in oncology: will itreplace the other modalities? Semin Nucl Med1997;27:94-106.
22 Brown R S., Leung I. Y., Fisher S. I., Frey K.A., Ethier S. P. and Wahl R L. Intratumoraldistribution of tritiated-FDG in breast carcinoma:correlation between Glut-1 expression and FDGuptake. J Nucl Med 1996;37:1042-1047.
23 Nisoka T., Oda Y., Seino Y., Yamamoto T.,Inagaki N., Yano H., Imura H., Shigemoto Rand Kikuchi H. Distribution of the glucosetransporters in human brain tumors. Cancer Res1992;52:3972-3979.
24 Parry D. M. and Pedersen P. L. Intracellularlocalization and properties of particulatehexokinase in the Novikoff ascites tumor:Evidence for an outer mitochondrial membranelocation, J Bioi Chem 1983;258:10904-10912.
25 Brown R S. and Wahl R. Overexpression ofGLUT 1 glucose transporter in human breastcancer. An immunohistochemical study. Cancer1993;72: 2979-2985.
26 Bustamante E., Morris H. P. and Petersen P. L.Energy metabolism of tumor cells: Requirementfor a form of hexokinase with a propensity formitochondrial binding. J Bioi Chem 1981;256:8699-8704.
27 Brodin L. H., Valind S-O., Rhodes C. G., PantinC. F., Sweatman M. and Jones T. Fluorine-ISdeoxyglucose uptake in sarcoidosis measured withpositron emission tomography. Eur J Nucl Med1994;21:297-305.
28 Yamamoto T., Seino Y., Fukumoto H., Koh G.,Yano H., Inagaki N., Yamada Y., Inoue K.,Manabe T. and Imura H. Over-expression offacilitative glucose transporter genes in humancancer. Biochem Biophy Res Comm 1990;170:223-230.