DOI QR코드

DOI QR Code

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo (College of Animal Science and Technology, Inner Mongolia Minzu University) ;
  • Tang, Mingyu (College of Animal Science and Technology, Inner Mongolia Minzu University) ;
  • Zhang, Yuming (College of Animal Science and Technology, Inner Mongolia Minzu University) ;
  • Li, Yansong (College of Animal Science and Technology, Inner Mongolia Minzu University) ;
  • Mao, Jingdong (College of Animal Science and Technology, Inner Mongolia Minzu University) ;
  • Deng, Qinghua (College of Animal Science and Technology, Inner Mongolia Minzu University) ;
  • Li, Shusen (College of Animal Science and Technology, Inner Mongolia Minzu University) ;
  • Jia, Zhenwei (College of Animal Science and Technology, Inner Mongolia Minzu University) ;
  • Du, Liyin (College of Animal Science and Technology, Inner Mongolia Minzu University)
  • Received : 2022.04.23
  • Accepted : 2022.07.26
  • Published : 2022.09.30

Abstract

Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.

Keywords

Acknowledgement

We thank the students of College of College of Animal Science and Technology of Inner Mongolia Minzu University who helped in this research and the support by the Natural Science Foundation of China, Natural Science Foundation of Inner Mongolia Autonomous Region and Young Scientific and Technological Talents in Inner Mongolia.

References

  1. Kang HJ, Lee IK, Piao MY, Kwak CW, Gu MJ, Yun CH, et al. Effects of road transportation on metabolic and immunological responses in Holstein heifers. Anim Sci J. 2017;88(1):140-148. https://doi.org/10.1111/asj.12604
  2. MacDonald AS, Daloze P, Dandavino R, Jindal S, Bear L, Dossetor JB, et al. A randomized study of cyclosporine with and without prednisone in renal allograft recipients. Transplant Proc. 1987;19(1 Pt 3):1865-1866.
  3. Wang Z, Malone MH, He H, McColl KS, Distelhorst CW. Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem. 2003;278(26):23861-23867. https://doi.org/10.1074/jbc.M301843200
  4. Zhang L, Insel PA. The pro-apoptotic protein Bim is a convergence point for cAMP/protein kinase A- and glucocorticoid-promoted apoptosis of lymphoid cells. J Biol Chem. 2004;279(20):20858-20865. https://doi.org/10.1074/jbc.M310643200
  5. Medh RD, Webb MS, Miller AL, Johnson BH, Fofanov Y, Li T, et al. Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics. 2003;81(6):543-555. https://doi.org/10.1016/S0888-7543(03)00045-4
  6. Plessers E, Watteyn A, Wyns H, Pardon B, De Backer P, Croubels S. Study of the immunomodulatory properties of gamithromycin and dexamethasone in a lipopolysaccharide inflammation model in calves. Res Vet Sci. 2015;103:218-223. https://doi.org/10.1016/j.rvsc.2015.10.014
  7. Hirsch G, Lavoie-Lamoureux A, Beauchamp G, Lavoie JP. Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids. PLoS One. 2012;7(9):e44606. https://doi.org/10.1371/journal.pone.0044606
  8. Kloos M, Bruser A, Kirchberger J, Schoneberg T, Strater N. Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation. Biochem J. 2015;469(3):421-432. https://doi.org/10.1042/BJ20150251
  9. Corwin E, Dunlop AL, Fernandes J, Li S, Pearce B, Jones DP. Metabolites and metabolic pathways associated with glucocorticoid resistance in pregnant African-American women. Compr Psychoneuroendocrinol. 2020;1-2:100001. https://doi.org/10.1016/j.cpnec.2020.100001
  10. Ronchetti S, Migliorati G, Bruscoli S, Riccardi C. Defining the role of glucocorticoids in inflammation. Clin Sci (Lond). 2018;132(14):1529-1543. https://doi.org/10.1042/CS20171505
  11. Maloney CG, Kutchera WA, Albertine KH, McIntyre TM, Prescott SM, Zimmerman GA. Inflammatory agonists induce cyclooxygenase type 2 expression by human neutrophils. J Immunol. 1998;160(3):1402-1410. https://doi.org/10.4049/jimmunol.160.3.1402
  12. Garcia C, de Oliveira MC, Verlengia R, Curi R, Pithon-Curi TC. Effect of dexamethasone on neutrophil metabolism. Cell Biochem Funct. 2003;21(2):105-111. https://doi.org/10.1002/cbf.1002
  13. Maratou E, Dimitriadis G, Kollias A, Boutati E, Lambadiari V, Mitrou P, et al. Glucose transporter expression on the plasma membrane of resting and activated white blood cells. Eur J Clin Invest. 2007;37(4):282-290. https://doi.org/10.1111/j.1365-2362.2007.01786.x
  14. Lang F, Singh Y, Salker MS, Ma K, Pandyra AA, Lang PA, et al. Glucose transport in lymphocytes. Pflugers Arch. 2020;472(9):1401-1406. https://doi.org/10.1007/s00424-020-02416-y
  15. Ewart HS, Somwar R, Klip A. Dexamethasone stimulates the expression of GLUT1 and GLUT4 proteins via different signalling pathways in L6 skeletal muscle cells. FEBS Lett. 1998;425(1):179-183.
  16. Weinstein SP, Wilson CM, Pritsker A, Cushman SW. Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle. Metabolism. 1998;47(1):3-6.
  17. Niu L, Chen Q, Hua C, Geng Y, Cai L, Tao S, et al. Effects of chronic dexamethasone administration on hyperglycemia and insulin release in goats. J Anim Sci Biotechnol. 2018;9(1):26. https://doi.org/10.1186/s40104-018-0242-4
  18. Qi D, Pulinilkunnil T, An D, Ghosh S, Abrahani A, Pospisilik JA, et al. Single-dose dexamethasone induces whole-body insulin resistance and alters both cardiac fatty acid and carbohydrate metabolism. Diabetes. 2004;53(7):1790-1797. https://doi.org/10.2337/diabetes.53.7.1790
  19. Spence JT, Koudelka AP. Pathway of glycogen synthesis from glucose in hepatocytes maintained in primary culture. J Biol Chem. 1985;260(3):1521-1526. https://doi.org/10.1016/S0021-9258(18)89623-5
  20. Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: an update. Mol Cell Endocrinol. 2013;380(1-2):65-78. https://doi.org/10.1016/j.mce.2013.03.007
  21. Parker CG, Cheung E. Metabolic control of teleost reproduction by leptin and its complements: understanding current insights from mammals. Gen Comp Endocrinol. 2020;292:113467. https://doi.org/10.1016/j.ygcen.2020.113467
  22. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927-939. https://doi.org/10.1016/j.cell.2005.07.002
  23. Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, et al. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ. 2007;14(5):1029-1039. https://doi.org/10.1038/sj.cdd.4402099
  24. Fainsod-Levi T, Gershkovitz M, Vols S, Kumar S, Khawaled S, Sagiv JY, et al. Hyperglycemia impairs neutrophil mobilization leading to enhanced metastatic seeding. Cell Reports. 2017;21(9):2384-2392. https://doi.org/10.1016/j.celrep.2017.11.010
  25. Hu X, Li X, Xiao C, Kong L, Zhu Q, Song Z. Effects of dietary energy level on performance, plasma parameters, and central AMPK levels in stressed broilers. Front Vet Sci. 2021;8:681858. https://doi.org/10.3389/fvets.2021.681858
  26. Vanacker N, Ollier S, Beaudoin F, Blouin R, Lacasse P. Effect of inhibiting the lactogenic signal at calving on milk production and metabolic and immune perturbations in dairy cows. J Dairy Sci. 2017;100(7):5782-5791. https://doi.org/10.3168/jds.2017-12570
  27. Swerdlow S, McColl K, Rong Y, Lam M, Gupta A, Distelhorst CW. Apoptosis inhibition by Bcl-2 gives way to autophagy in glucocorticoid-treated lymphocytes. Autophagy. 2008;4(5):612-620. https://doi.org/10.4161/auto.5920
  28. Lu Y, Liu H, Bi Y, Yang H, Li Y, Wang J, et al. Glucocorticoid receptor promotes the function of myeloid- derived suppressor cells by suppressing HIF1α-dependent glycolysis. Cell Mol Immunol. 2018;15(6):618-629. https://doi.org/10.1038/cmi.2017.5
  29. Weber PS, Madsen-Bouterse SA, Rosa GJ, Sipkovsky S, Ren X, Almeida PE, et al. Analysis of the bovine neutrophil transcriptome during glucocorticoid treatment. Physiol Genomics. 2006;28(1):97-112. https://doi.org/10.1152/physiolgenomics.00094.2006
  30. Ignacchiti MD, Sesti-Costa R, Marchi LF, Chedraoui-Silva S, Mantovani B. Effect of academic psychological stress in post-graduate students: the modulatory role of cortisol on superoxide release by neutrophils. Stress. 2011;14(3):290-300. https://doi.org/10.3109/10253890.2010.545459
  31. Dandona P, Aljada A, Ghanim H, Mohanty P, Hamouda W, Al-Haddad W. Acute suppressive effect of hydrocortisone on p47 subunit of nicotinamide adenine dinucleotide phosphate oxidase. Metabolism. 2001;50(5):548-552. https://doi.org/10.1053/meta.2001.22511
  32. Dandona P, Mohanty P, Hamouda W, Aljada A, Kumbkarni Y, Garg R. Effect of dexamethasone on reactive oxygen species generation by leukocytes and plasma interleukin-10 concentrations: a pharmacodynamic study. Clin Pharmacol Ther. 1999;66(1):58-65. https://doi.org/10.1016/S0009-9236(99)70054-8
  33. Maeda Y, Tanaka R, Ohtsuka H, Matsuda K, Tanabe T, Oikawa M. Comparison of the immunosuppressive effects of dexamethasone, flunixin meglumine and meloxicam on the in vitro response of calf peripheral blood mononuclear cells. J Vet Med Sci. 2011;73(7):957-960. https://doi.org/10.1292/jvms.10-0422
  34. de Almeida AR, Dantas AT, Pereira MC, Cordeiro MF, Goncalves RS, de Melo Rego MJ, et al. Dexamethasone inhibits cytokine production in PBMC from systemic sclerosis patients. Inflammopharmacology. 2019;27(4):723-730. https://doi.org/10.1007/s10787-019-00600-w
  35. Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch. 2004;447(5):510-518. https://doi.org/10.1007/s00424-003-1063-6
  36. Amara N, Cooper MP, Voronkova MA, Webb BA, Lynch EM, Kollman JM, et al. Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell. 2021;184(17):4480-4494.e15. https://doi.org/10.1016/j.cell.2021.07.004
  37. Stjernholm RL, Manak RC. Carbohydrate metabolism in leukocytes. XIV. Regulation of pentose cycle activity and glycogen metabolism during phagocytosis. J Reticuloendothel Soc. 1970;8(6):550-560.
  38. Riffelmacher T, Clarke A, Richter F, Stranks A, Pandey S, Danielli S, et al. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity. 2017;47(3):466-480.e5. https://doi.org/10.1016/j.immuni.2017.08.005
  39. Choi GE, Lee HJ, Chae CW, Cho JH, Jung YH, Kim JS, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12(1):487. https://doi.org/10.1038/s41467-020-20679-y
  40. Yuyun X, Fan Y, Weiping W, Qing Y, Bingwei S. Metabolomic analysis of spontaneous neutrophil apoptosis reveals the potential involvement of glutathione depletion. Innate Immun. 2021;27(1):31-40. https://doi.org/10.1177/1753425920951985