• Title/Summary/Keyword: glass substrate

Search Result 1,660, Processing Time 0.033 seconds

Effect of surface toughness on the interfacial adhesion energy between glass wafer and UV curable polymer for different surface roughness (표면거칠기에 따른 글래스 웨이퍼와 UV 경화 폴리머사이의 계면접착 에너지 평가)

  • Jang, Eun-Jung;Hyun, Seoung-Min;Choi, Dae-Geun;Lee, Hak-Joo;Park, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.40-44
    • /
    • 2008
  • The interfacial adhesion energy between resist and a substrate is very important due to resist pull-off problems during separation of mold from a substrate in nanoimprint process. And effect of substrate surface roughness on interfacial adhesion energy is very important. In this paper, we have treated glass wafer surface using $CF_4$ gas for increase surface roughness and it has tested interfacial adhesion properties of UV resin/glass substrate interfaces by 4 point bending test. The interfacial adhesion energies by bare, 30, 60 and 90 sec surface treatments are 0.62, 1.4, 1.36 and 2 $J/m^2$, respectively. The test results showed quantitative comparisons of interfacial fracture energy (G) effect of glass wafer surface roughness.

  • PDF

Formation of Quantum Dot Fluorescent Monolayer Film using Peptide Bond

  • Inami, Watau;Nanbu, Koichi;Miyakawa, Atsuo;Kawata, Yoshimasa
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • We present a method for preparing a quantum dot fluorescent monolayer film on a glass substrate. Since nanoparticles aggregate easily, it is difficult to prepare a nanoparticle monolayer film. We have used a covalent bond, the peptide bond, to fix quantum dots on the glass substrate. The surface of the quantum dot was functionalized with carboxyl groups, and the glass substrate was also functionalized with amino groups using a silane coupling agent. The carboxyl group can be strongly coupled to the amino group. We were able to successfully prepare a monolayer film of CdSe quantum dots on the glass substrate.

Study on a large-size glass substrate handler for new generation OLED (차세대 유기 EL 디스플레이를 위한 기판 조작에 관한 연구)

  • Kim Soak-Han;Lee Dong-Eun;Kim Jun-Chul;Lee Eung-Ki
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.79-80
    • /
    • 2006
  • In order to raise productivity of the OLED and realization of the OLED TV, it is required to improve the design of the board size glass panel. The large-size glass substrate has some difficulties regarding its deflection during handling operation due to its small thickness (0.7t) which is not even enough to stand its mass itself. This paper is demonstrating a new solution of this difficult through clamping and bending end condition, which helps to minimize the deflection of the glass substrate.

  • PDF

In Vitro Biocompatibility Test of Multi-layered Plasmonic Substrates with Flint Glasses and Adhesion Films

  • Kim, Nak-Hyeon;Byun, Kyung Min;Hwang, Seoyoung;Lee, Yena;Jun, Sang Beom
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.174-179
    • /
    • 2014
  • Since in vitro neural recording and imaging applications based on a surface plasmon resonance (SPR) technique have expanded dramatically in recent years, cytotoxicity assessment to ensure the biosafety and biocompatibility for those applications is crucial. Here, we report the cytotoxicity of the SPR substrate incorporating a flint glass whose refractive index is larger than that of a conventional crown glass. A high refractive index glass substrate is essential in neural signal detection due to the advantages such as high sensitivity and wide dynamic range. From experimental data using primary hippocampal neurons, it is found that a lead-based flint glass is not appropriate as a neural recording template although the neuron cells are not directly attached to the toxic glass. We also demonstrate that the adhesion layer between the glass substrate and the gold film plays an important role in achieving the substrate stability and the cell viability.

Study on Self-Organized Ru Dots Using ALD and Low Temperature Rapid Thermal Annealing Process (ALD와 저온 RTA를 이용한 자가정렬 Ru 응집체의 제조와 물성)

  • Park, Jongseung;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.557-562
    • /
    • 2012
  • Self-organized ruthenium (Ru) dots were fabricated by $400^{\circ}C$ RTA (rapid thermal annealing) and ALD (atomic layer deposition). The dots were produced under the $400^{\circ}C$ RTA conditions for 10, 30 and 60 seconds on all Si(100)/200 nm-SiO2, glass, and glass/fluorine-doped tin oxide (FTO) substrates. Electrical sheet resistance, and surface microstructure were examined using a 4-point probe and FE-SEM (field emission scanning electron microscopy). Ru dots were observed when a 30 nm-Ru layer on a Si(100)/200 nm-SiO2 substrate was annealed for 10, 30 and 60 seconds, whereas the dots were only observed on a glass substrate when a 50 nm-Ru layer was annealed on glass. For a glass/FTO substrate, RTA <30 seconds was needed for 30 nm Ru thick films. Those dots can increase the effective surface area for silicon and glass substrates by up to 5-44%, and by 300% for the FTO substrate with a < $20^{\circ}$ wetting angle.

Synthesis and Characterization of Cordierite Glass-Ceramics for Low Firing Temperature Substrate; (II) Properties of Cordierite Glass-Ceramics Containing CeO2 (저온소결 세라믹기판용 Cordierite계 결정화유리의 합성 및 특성조사에 관한 연구;(II) $CeO_2$를 첨가한 Cordierite계 결정화유리의 특성)

  • 이근헌;김병호;임대순;정재현
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.827-835
    • /
    • 1992
  • The effects of CeO2 on the properties of cordierite-based glass-ceramics and its applicability to low firing temperature substrate were examined. Glass-ceramics were prepared by sintering the glass powder compacts at 900~100$0^{\circ}C$ for 3 h. Density, bending strength, dielectric constant and thermal expansion coefficient of the glass-ceramics were measured as functions of CeO2 contents and sintering temperatures. By adding CeO2, dense glass-ceramics were obtained below 100$0^{\circ}C$. dielectric constant and bending strength were more dependent on the porosity of glass-ceramics containing 5 wt% CeO2, sintered at 100$0^{\circ}C$ for 3 h, were as follows; relative density is 95.3%, bending strength is 178$\pm$11 MPa, dielectric constant is 4.98$\pm$0.20 (at 1 MHz) and thermal expansion coefficient is 33.7$\times$10-7/$^{\circ}C$. Therefore, the glass-ceramics containing 5 wt% CeO2 appeared to be suitable for low firing temperature substrate of electronic devices.

  • PDF

Vertically Standing Graphene on Glass Substrate by PECVD

  • Ma, Yifei;Hwang, Wontae;Jang, Haegyu;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.232.2-232.2
    • /
    • 2014
  • Since its discovery in 2004, graphene, a sp2-hybridized 2-Dimension carbon material, has drawn enormous attention. A variety of approaches have been attempted, such as epitaxial growth from silicon carbide, chemical reduction of graphene oxide and CVD. Among these approaches, the CVD process takes great attention due to its guarantee of high quality and large scale with high yield on various transition metals. After synthesis of graphene on metal substrate, the subsequent transfer process is needed to transfer graphene onto various target substrates, such as bubbling transfer, renewable epoxy transfer and wet etching transfer. However, those transfer processes are hard to control and inevitably induce defects to graphene film. Especially for wet etching transfer, the metal substrate is totally etched away, which is horrendous resources wasting, time consuming, and unsuitable for industry production. Thus, our group develops one-step process to directly grow graphene on glass substrate in plasma enhanced chemical vapor deposition (PECVD). Copper foil is used as catalyst to enhance the growth of graphene, as well as a temperature shield to provide relatively low temperature to glass substrate. The effect of growth time is reported that longer growth time will provide lower sheet resistance and higher VSG flakes. The VSG with conductivity of $800{\Omega}/sq$ and thickness of 270 nm grown on glass substrate can be obtained under 12 min growing time. The morphology is clearly showed by SEM image and Raman spectra that VSG film is composed of base layer of amorphous carbon and vertically arranged graphene flakes.

  • PDF

Fabrication of thin Film Transistor on Plastic Substrate for Application to Flexible Display (Flexible 디스플레이로의 응용을 위한 플라스틱 기판 위의 박막트랜지스터의 제조)

  • 배성찬;오순택;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.481-485
    • /
    • 2003
  • Amorphous silicon (a-Si:H) based TFT process has been studied at the maximum temperature of 15$0^{\circ}C$ with 25${\mu}{\textrm}{m}$ thick flexible and adhesive tape type polyimide foil substrate, which has benefit on handling a rugged, flexible plastic substrate trough sticking simply it to glass. This paper summarize the process procedure of the TFT on the plastic substrate and shows its electrical characteristics in comparison with glass substrate using primarily the ON/OFF current ratio and the field effect mobility as the quality criterion. The a-SiN:H coating layer played an important role in decreasing surface roughness of plastic substrate, so leakage current of TFT was decreased and mobility was increased. The results show that high quality a-Si:H TFTs can be fabricated on the plastic substrates through coating a rough plastic surface with a-SiN:H.

Application of Inkjet Technology in Flat Panel Display

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.913-918
    • /
    • 2005
  • It is expected that the inkjet technology offers prospect for reliable and low cost manufacturing of FPD (Flat Panel Display). This inkjet technology also offers a more simplified manufacturing process for various part of the FPD than conventional process. For example, recently the novel manufacturing processes of color filter (C/F) in LCD, or RGB patterning in OLED by inkjet printing method have been developed. This elaborates will be considered as the precious point of manufacturing process for the mass production of enlarged-display panel with a low price. On this point of view, we would like to review the status of inkjet technology in FPD, with some results on forming micro line by inkjet patterning of suspension type silver nano ink as below. We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

The Characteristic Self-assembly of Gold Nanoparticles over Indium Tin Oxide (ITO) Substrate

  • Li, Wan-Chao;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1133-1137
    • /
    • 2011
  • Ordered array of gold nanoparticles (Au NPs) over ITO glass was investigated in terms of ITO pretreatment, particle size, and diamines with different chain length. Owing to the indium-tin-oxide (ITO) layer coated on the glass, the substrate surface has a limited number of hydroxyl groups which can produce functionalized amine groups for Au binding, which resulted in the loosely-packed array of Au NPs on the ITO surface. Diamine ligand as a molecular linker was introduced to enhance the lateral binding of adjacent Au NPs immobilized on the amine-functionalized ITO glass, consequently leading to the densely-packed array of Au NPs over the ITO substrate. The molecular bridging effect was strengthened with the increase of chain length of diamines: C-12 > C-8. The packing density of small Au NPs (< 40 nm) was significantly increased with the increase of C-8 diamine, but large Au NPs (> 60 nm) did not produce densely-packed array on the ITO glass even for the dosage of C-12 diamine.