DOI QR코드

DOI QR Code

Formation of Quantum Dot Fluorescent Monolayer Film using Peptide Bond

  • Received : 2011.10.02
  • Accepted : 2012.03.23
  • Published : 2012.03.25

Abstract

We present a method for preparing a quantum dot fluorescent monolayer film on a glass substrate. Since nanoparticles aggregate easily, it is difficult to prepare a nanoparticle monolayer film. We have used a covalent bond, the peptide bond, to fix quantum dots on the glass substrate. The surface of the quantum dot was functionalized with carboxyl groups, and the glass substrate was also functionalized with amino groups using a silane coupling agent. The carboxyl group can be strongly coupled to the amino group. We were able to successfully prepare a monolayer film of CdSe quantum dots on the glass substrate.

Keywords

References

  1. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, 2000, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, pp.314-317. https://doi.org/10.1126/science.290.5490.314
  2. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, 1998, "1.3 ${\mu}m$ room- temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, pp.2564-2566. https://doi.org/10.1063/1.122534
  3. A. J. Shields, "Semiconductor Quantum Light Sources," Nature Photonics 1 pp.215-223 (2007). https://doi.org/10.1038/nphoton.2007.46
  4. M. C. Schlamp, X. G. Peng, and A. P. Alivisatos, 1997, "Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer," J. Appl. Phys. 82, pp.5837-5842. https://doi.org/10.1063/1.366452
  5. N. M. Park, T. S. Kim, and S. J. Park, 2001, "Band gap engineering of amorphous silicon quantum dots for light-emitting diodes," Appl. Phys. Lett. 78, pp.2575-2577. https://doi.org/10.1063/1.1367277
  6. S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, 2002, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature 420, pp.800-803. https://doi.org/10.1038/nature01217
  7. T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, 2011, "Full-colour quantum dot displays fabricated by transfer printing," Nature Photonics 5, pp.176-182. https://doi.org/10.1038/nphoton.2011.12
  8. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, 2010, "White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights," Adv Mater. 22, pp.3076-3080. https://doi.org/10.1002/adma.201000525
  9. H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, 2000, "Nanomechanical oscillations in a single-$C_{60}$ transistor," Nature 407, pp.57-60. https://doi.org/10.1038/35024031
  10. C. W. Warren Chan, and S. Nie, 1998, "Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection," Science 281, pp.2016-2018. https://doi.org/10.1126/science.281.5385.2016
  11. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, 2005, "Quantum dot bioconjugates for imaging, labelling and sensing," Nature Materials 4, pp.435-446. https://doi.org/10.1038/nmat1390
  12. S. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, 2006, "Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films," J. Am. Chem. Soc. 128, pp.2385-2393. https://doi.org/10.1021/ja056494n
  13. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, 1998, "Coherent Optical Control of the Quantum State of a Single Quantum Dot," Science 282, pp.1473-1476. https://doi.org/10.1126/science.282.5393.1473
  14. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, 1999, "Quantum Information Processing Using Quantum Dot Spins and Cavity QED," Phys. Rev. Lett. 83, pp.4204-4207. https://doi.org/10.1103/PhysRevLett.83.4204
  15. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, 2000, "A Quantum Dot Single-Photon Turnstile Device," Science 290, pp.2282-2285. https://doi.org/10.1126/science.290.5500.2282
  16. F. Lenzmann, K. Li, A. H. Kitai, and H. D. H. Stover, 1994, "Thin-film micropatterning using polymer microspheres," Chem. Mater. 6, pp.156-159. https://doi.org/10.1021/cm00038a010
  17. K. U. Fulda, and B. Tieke, 1994, "Langmuir films of monodisperse 0.5 ${\mu}m$ spherical polymer particles with a hydrophobic core and a hydrophilic shell," Adv. Mater. 6, pp.288-290. https://doi.org/10.1002/adma.19940060405
  18. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, 1993, "Two-dimensional crystallization," Nature 361, pp.26-26.
  19. A. S. Dimitrov, and K. Nagayama, 1996, "Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces," Langmuir 12, pp.1303-1311. https://doi.org/10.1021/la9502251
  20. E. Sabatani, and I. Rubinstein, 1987, "Organized self-assembling monolayers on electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very rapid electrode kinetics," J. Phys. Chem. 91, pp.6663-6669. https://doi.org/10.1021/j100311a021
  21. C. Kermel, V. Lardot, D. Libert, and I. Urbain, 2001, "Grain Oriented Microstructure Made in High Magnetic Field," Key Eng. Mater. 206-213, pp.445-448.
  22. L. Pauling, 1960, The Nature of the Chemical Bond and the Structure of Molecules and Crystals; An Introduction to Modern Structural Chemistry (Cornell Univ. Press, Ithica, NY).