DOI QR코드

DOI QR Code

The Characteristic Self-assembly of Gold Nanoparticles over Indium Tin Oxide (ITO) Substrate

  • Li, Wan-Chao (Department of Chemical and Bio Engineering, Kyungwon University) ;
  • Lee, Sang-Wha (Department of Chemical and Bio Engineering, Kyungwon University)
  • Received : 2010.09.04
  • Accepted : 2010.10.30
  • Published : 2011.04.20

Abstract

Ordered array of gold nanoparticles (Au NPs) over ITO glass was investigated in terms of ITO pretreatment, particle size, and diamines with different chain length. Owing to the indium-tin-oxide (ITO) layer coated on the glass, the substrate surface has a limited number of hydroxyl groups which can produce functionalized amine groups for Au binding, which resulted in the loosely-packed array of Au NPs on the ITO surface. Diamine ligand as a molecular linker was introduced to enhance the lateral binding of adjacent Au NPs immobilized on the amine-functionalized ITO glass, consequently leading to the densely-packed array of Au NPs over the ITO substrate. The molecular bridging effect was strengthened with the increase of chain length of diamines: C-12 > C-8. The packing density of small Au NPs (< 40 nm) was significantly increased with the increase of C-8 diamine, but large Au NPs (> 60 nm) did not produce densely-packed array on the ITO glass even for the dosage of C-12 diamine.

Keywords

References

  1. Sainsbury, T.; Ikuno, T.; Okawa, D.; Pacile, D.; Jean, M.; Frechet, J.; Zettl, A. J. Phys. Chem. C 2007, 111, 12992. https://doi.org/10.1021/jp072958n
  2. Fan, H.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H.; Lopez, G. P.; Brinker, C. J. Science 2004, 304, 567. https://doi.org/10.1126/science.1095140
  3. Wang, X.; Na, N.; Zhang, S.; Wu, Y.; Zhang, X. J. Am. Chem. Soc. 2007, 129, 6062. https://doi.org/10.1021/ja0702768
  4. Brust, M.; Schiffrin, D. J.; Bethell, D.; Kiely, C. J. Adv. Mater. 1995, 7, 795. https://doi.org/10.1002/adma.19950070907
  5. Hakkinen, H.; Abbet, S.; Sanchez, A.; Heiz, U.; Landman, U. Angew. Chem. Int. Ed. 2003, 42, 1297. https://doi.org/10.1002/anie.200390334
  6. Zheng, M.; Huang, X. Biofunctionalization of Gold Nanoparticles in Biofunctionalization of Nanomaterials; Kumar, C. S. S. R., Ed.; Wiley-VCH: Chichester, 2005; pp 99-124.
  7. Love, J. C.; Estroff, L. A.; Knebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. https://doi.org/10.1021/cr0300789
  8. Fitzmaurice, D.; Connolly, S. Adv. Mater. 1999, 11, 1202. https://doi.org/10.1002/(SICI)1521-4095(199910)11:14<1202::AID-ADMA1202>3.0.CO;2-H
  9. Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293. https://doi.org/10.1021/cr030698+
  10. Mann, S.; Shenton, W.; Li, M.; Connolly, S.; Fitzmaurice, D. Adv. Mater. 2000, 12, 147. https://doi.org/10.1002/(SICI)1521-4095(200001)12:2<147::AID-ADMA147>3.0.CO;2-U
  11. Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547. https://doi.org/10.1021/cr030067f
  12. Mena, M. L.; Yanez-Sedeno, P.; Pingarron, J. M. Anal. Biochem. 2005, 336, 20. https://doi.org/10.1016/j.ab.2004.07.038
  13. Willner, I.; Blonder, R.; Dagan, A. J. Am. Chem. Soc. 1994, 116, 9365. https://doi.org/10.1021/ja00099a078
  14. Faucheux, N.; Schweiss, R.; Lützow, K.; Werner, C.; Groth, T. Biomaterials 2004, 25, 2721. https://doi.org/10.1016/j.biomaterials.2003.09.069
  15. Harfenist, S. A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. 1996, 100, 13904. https://doi.org/10.1021/jp961764x
  16. Moleller, M.; Spatz, J. P.; Roescher, A. Adv. Mater. 1996, 8, 337. https://doi.org/10.1002/adma.19960080411
  17. Sainsbury, T.; Ikuno, T.; Okawa, D.; Pacile, D.; Frechet, J. M. J.; Zettl, A. J. Phys. Chem. C 2007, 111, 12992. https://doi.org/10.1021/jp072958n
  18. Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559. https://doi.org/10.1021/ja00246a011
  19. Martin, J. E.; Wilcoxon, J. P.; Odinek, J.; Anderson, R. A.; Provencio, P. J. Phys. Chem. B 2003, 107, 430. https://doi.org/10.1021/jp020489d
  20. Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 1999, 11, 198. https://doi.org/10.1021/cm980665o
  21. Kim, B.; Tripp, S. L.; Wei, A. J. Am. Chem. Soc. 2001, 123, 7955. https://doi.org/10.1021/ja0160344
  22. Leff, D. V.; Brandt, L.; Heath, J. R. Langmuir 1996, 12, 4723. https://doi.org/10.1021/la960445u
  23. Yamamoto, M.; Nakamoto, M. J. Mater. Chem. 2003, 13, 2064. https://doi.org/10.1039/b307092a
  24. Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2003, 15, 935. https://doi.org/10.1021/cm0206439
  25. Kuo, P. L.; Liang, W. J.; Wang, F. Y. J. Polym. Sci. Part A: Chem. Ed. 2003, 41, 1360. https://doi.org/10.1002/pola.10667
  26. Li, W.; Lee, S. Chemical Physics Letters 2011, 506, 57. https://doi.org/10.1016/j.cplett.2011.02.045
  27. Kuo, P. L.; Chen, C. C.; Jao, M. W. J. Phys. Chem. B 2005, 109, 9445. https://doi.org/10.1021/jp050136p
  28. Doron, A.; Katz, E.; Willner, I. Langmuir 1995, 11, 1313. https://doi.org/10.1021/la00004a044
  29. Khatri, O. P.; Murase, K.; Sugimura, H. Langmuir 2008, 24, 3787. https://doi.org/10.1021/la7039042
  30. Frens, G. Nature Physical Science 1973, 241, 20. https://doi.org/10.1038/physci241020a0
  31. Li, W.; Lee, S. Physica Scripta 2010, 81, 015702. https://doi.org/10.1088/0031-8949/81/01/015702
  32. Kim, C. O.; Hong, S.; Kim, M.; Park, S.; Park, J. W. Journal of Colloid and Interface Science 2004, 277, 499. https://doi.org/10.1016/j.jcis.2004.04.064