• Title/Summary/Keyword: glass crack

Search Result 305, Processing Time 0.024 seconds

Axial Crush and Energy Absorption Characteristics of Aluminum/GFRP Hybird Square Tubes (알루미늄/GFRP 혼성 사각튜브의 정적 압축 붕괴 및 에너지 흡수 특성)

  • 김구현;이정주;신금철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.208-219
    • /
    • 2000
  • In this study, static axial crush tests were performed with the new aluminum/GFRP hybrid tube. Glass/Epoxy prepregs were wrapped around an aluminum tube and co-cured. The failure of the hybrid tube was stable and progressive without trigger mechanism, and specific energy absorption was increased to the maximum of 33% in comparison with the aluminum tube. Effective energy absorption is possible for an inner aluminum tube because a wrapped composite tube constrains the deflection of an aluminum tube. The failure of a hybrid composite tube was stable without trigger mechanism because the inner aluminum tube could play the role of the crack initiator and controller. Mean crushing load could be calculated by modifying the plastic hinge collapse model for hybrid materials. The predicted results by this analytical model showed good agreement with the experimental results. It can be said that Aluminum/Glass-Epoxy hybrid tube is suitable for the vehicle front structure because this hybrid tube shows effective energy absorption, easy production, and simple application capability for RTM process.

  • PDF

Study the effect of machining process and Nano Sio2 on GFRP mechanical performances

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, the effect of Nano silica (SiO2) on the buckling strength of the glass fiber reinforced laminates containing the machining process causes holes were investigated. The tests have been applied on two status milled and non-milled. To promote the mechanical behavior of the fiber-reinforced glass epoxy-based composites, Nano sio2 was added to the matrix to improve and gradation. Nano sio2 is chosen because of flexibility and high mechanical features; the effect of Nanoparticles on surface serenity has been studied. Thus the effect of Nanoparticles on crack growth and machining process and delamination caused by machining has been studied. We can also imply that many machining factors are essential: feed rate, thrust force, and spindle speed. Also, feed rate and spindle speed were studied in constant values, that the thrust forces were studied as the main factor caused residual stress. Moreover, entrance forces were measured by local calibrated load cells on machining devices. The results showed that the buckling load of milled laminates had been increased by about 50% with adding 2 wt% of silica in comparison with the neat damaged laminates while adding more contents caused adverse effects. Also, with a comparison of two milling tools, the cylindrical radius-end tool had less destructive effects on specimens.

Optimization of PMD(Pre-Metal Dielectric) Linear Nitride Process (PMD(Pre-Metal Dielectric) 선형 질화막 공정의 최적화)

  • Jeong, So-Young;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Lee, Chul-In;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.38-41
    • /
    • 2001
  • In this work, we have been studied the characteristics of each nitride film for the optimization of PMD(pre-metal dielectric) liner nitride process, which can applicable in the recent semiconductor manufacturing process. The deposition conditions of nitride film were splited by PO (protect overcoat) nitride, baseline, low hydrogen, high stress and low hydrogen, respectively. And also we tried to catch hold of correlation between BPSG(boro-phospho silicate glass) deposition and densification. Especially, we used FTIR area method for the analysis of density change of Si-H bonding and Si-NH-Si bonding, which decides the characteristics of nitride film. To judge whether the deposited films were safe or not, we investigated the crack generation of wafer edge after BPSG densification, and the changes of nitride film stress as a function of RF power variation.

  • PDF

A Study on the Development of an Automatic Strip Machine for Removing Mobile Phone Glass Protective Films (휴대폰 글라스 보호필름 자동 박리장치 개발에 관한 연구)

  • Choi, Wang-Kug;Hur, Jang-Wook;Kim, Dong-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.9-15
    • /
    • 2016
  • Due to material-specific vulnerabilities, the surfaces of the liquid crystal glasses used in mobile phones can crack easily, with even the smallest cracks undergoing propagation. To protect the glass surfaces, films are attached to the surfaces during the mobile phone production process. However, after machining the liquid crystal, removal of the film on the liquid crystal surface using chemical and mechanical methods is required. In this research, a peeling apparatus was developed for removing the films attached to liquid crystal surfaces during the production process. Mechanical attachment and design automation through experimentation and finite element modelling were performed to confirm the validity of the design.

Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping

  • Elwan, S.K.;Rashed, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2011
  • This paper aims to study the behavior of short reinforced concrete columns confined with external glass Fiber Reinforced Polymers (GFRP) sheets under eccentric loads. The experimental part of the study was achieved by testing 9 specimens under eccentric compression. Three eccentricity ratios corresponding to e/t = 0, 0.10, 0.50 in one direction of the column were used. Specimens were divided into three groups. The first group was the control one without confinement. The second group was fully wrapped with GFRP laminates before loading. The third group was wrapped under loading after reaching 75% of failure loads of the control specimens. The third group was investigated in order to represent the practical case of strengthening a loaded column with FRP laminates. All specimens were loaded until failure. The results show that GFRP laminates enhances both failure load and ductility response of eccentrically loaded column. Moreover, the study also illustrates the effect of confinement on the first crack load, lateral deformation, strain in reinforcement and failure pattern. Based on the analysis of the experimental results, a simple model has been proposed to predict the improvement of load carrying capacity under different eccentricity ratios. The predicted equation takes into consideration the eccentricity to cross section depth ratio, the ultimate strength of GFRP, the thickness of wrapping laminate, and the time of wrapping (before loading and under loading). A good correlation was obtained between experimental and analytical results.

Modified DEBA for determining size dependent shear fracture energy of laminates

  • Goodarzi, M. Saeed;Hosseini-Toudeshky, Hossein
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • It has been argued that fracture energy of composite laminates depends on their thickness and number of layers. In this paper a modified direct energy balance approach (DEBA) has been developed to evaluate the mode-II shear fracture energy for E-glass/Epoxy laminates from finite element model at an arbitrary thickness. This approach considers friction and damage/plasticity deformations using cohesive zone modeling (CZM) and nonlinear finite element modeling. The presence of compressive stress and resulting friction was argued to be a possible cause for the thickness dependency of fracture energy. In the finite element modeling, CZM formulation has been developed with bilinear cohesive constitutive law combined with friction consideration. Also ply element have been developed with shear plastic damage model. Modified direct energy balance approach has been proposed for estimation of mode-II shear fracture energy. Experiments were performed on laminates of glass epoxy specimens for characterization of material parameters and determination of mode-II fracture energies for different thicknesses. Effect of laminate thickness on fracture energy of transverse crack tension (TCT) and end notched flexure (ENF) specimens has been numerically studied and comparison with experimental results has been made. It is shown that the developed numerical approach is capable of estimating increase in fracture energy due to size effect.

Hail Impact Analysis of Photovoltaic Module using IEC Test (IEC 우박시험에 대한 태양광모듈 충돌 해석)

  • Park, Jung-Jae;Park, Chi-Yong;Ryu, Jae-Woong
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • The loss in photovoltaic power due to hailstorms has been highlighted as a major issue in the sustained growth of the PV power plant industry. This study investigates the safety of a solar module by conducting a numerical analysis of a hail test according to the IEC 61215 standard. Our study aims to elucidate the detailed behavior between the ice and solar modules and the micro-cracks forming on solar modules during hailstorms. To analyze the impact of hail, we used the ANSYS AUTODYN software to evaluate the impact characteristics on a solar module with different front glass thicknesses. The simulations show that a solar module with a glass thickness of 4.0 mm results in excellent durability against hail. The results indicate the feasibility of using simulations to analyze and predict micro-cracks on solar modules tailored to various conditions, which can be used to develop new solar modules.

Research on Ultra-precision Grinding Work of Silicon Carbide (실리콘 카바이드의 초정밀 연삭 가공에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.58-63
    • /
    • 2009
  • Silicon carbide (SiC) has been used for many engineering applications because of their high strength at high temperatures and high resistances to chemical degradation. SiC is very useful especially for a glass lens mold whose components demanded to the machining with good surface finish and low surface damage. The performance and reliability of optical components are strongly influenced by the surface damage of SiC during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified SiC glass lens mold. Usually the major form of damage in grinding of SiC is a crack occurs at surface and subsurface. The energy introduced in the layers close to the surface leads to the formation of these cracks. The experimental studies have been carried out to get optimum conditions for grinding of silicon carbide. To get the required qualified surface finish in grinding of SiC, the selection of type of the wheel is also important. Grinding processes of sintered SiC work-pieces is carried out with varying wheel type, depth of cut and feed using diamond wheel. The machining result of the surface roughness and the number of flaws, have been analyzed by use of surface profilers and SEM.

Preparation and Properties of ZnSe/Zn3P2 Heterojunction Formed by Surface Selenization of Zn3P2 Film Deposited on ZnTe Layer

  • Park, Kyu Charn;Cha, Eun Seok;Shin, Dong Hyeop;Ahn, Byung Tae;Kwon, HyukSang
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • ZnSe/$Zn_3P_2$ heterojunctions with a substrate configuration were fabricated using a series of cost-effective processes. Thin films of ZnTe and $Zn_3P_2$ were successively grown by close-spaced sublimation onto Mo-coated glass substrates. ZnSe layers thinner than 100nm were formed by annealing the $Zn_3P_2$ films in selenium vapor. Surface selenization generated a high density of micro-cracks which, along with voids, provided shunt paths and severely deteriorated the diode characteristics. Annealing the $Zn_3P_2$ film at $300^{\circ}C$ in a $ZnCl_2$ atmosphere before surface selenization produced a dense microstructure and prevented micro-crack generation. The mechanism of micro-crack generation by the selenization was described and the suppression effect of $ZnCl_2$ treatment on the micro-crack generation was explained. ZnSe/$Zn_3P_2$ heterojunctions with low leakage current ($J_0$ < $1{\mu}A/cm^2$) were obtained using an optimized surface selenization process with $ZnCl_2$ treatment. However, the series resistance was very high due to the presence of an electrical barrier between the ZnTe and $Zn_3P_2$ layers.

Phenyl modified silica sol-gel films for photonics (Photonic 재로로서 페닐실리카 코팅막의 특성)

  • Ahn, Bok-Yeop;Seok, Sang-Il;Kim, Joo-Hyeun;Lim, Mi-Ae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.131-131
    • /
    • 2003
  • The advent of photonic technologies in the field of communications and data transmission has been heavily increasing the demand in integrated optical (IO) circuits capable of accomplishing not only simple tasks like signal, but also more sophisticated functions like all-optical signal routing or active multiplexing/demultiplexing. In the last decade, sol-gel technology has been widely used to prepare optical materials. Sol-gel processes show many promises for the development of low-loss, high-performance glass integrated optical circuits. However, crack formation is likely to occur during heat treatment in thick gel films. In order to overcome the critical thickness limitation, the organic-modified silicate has been widely used. In this case coating matrices have been prepared from the organo-silanes of T structures, acidic catalyst and the as-prepared gel films have been heat-treated below 200$^{\circ}C$ to avoid the crack formation and the degradation of organic components. However, the films prepared in the acidic condition and the low heat temperature make the films contain high OH groups which is the major optical loss function. In this work, C$\sub$6/H$\sub$5/SiO$\sub$1.5/ films were prepared on silicon substrate by sol-gel method using base catalyst in a PTMS/NH$_4$OH/H$_2$O/C$_2$H$\sub$5/OH system. The sol showed spinable viscosity at 50 wt% of solid content, and neglectable viscosity change with time. The films were crack-free and transparent after curing at 450 $^{\circ}C$, and highly condensed to minimize OH content in C$\sub$6/H$\sub$5/SiO$\sub$1.5/ networks. The effects of heat treatment of the films are characterized on the critical thickness, the chemical composition and the refractive indices by means of SEM, FT-IR, TGA, prism coupler, respectively.

  • PDF