1 |
Achillopoulou, D.V., Kiziridou, A.N., Papachatzakis, G.A. and Karabinis, A.I. (2016), "Investigation of interface response of reinforced concrete columns retrofitted with composites", Steel Compos. Struct., Int. J., 22(6), 1337-1358.
DOI
|
2 |
Alfano, G. and Sacco, E. (2006), "Combining interface damage and friction in a cohesive zone model", Int. J. Numer. Methods Eng., 68(5), 542-582.
DOI
|
3 |
ASTM D7905/D7905M-14(2014), Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; American Society for Testing and Materials International, West Conshohocken, PA, USA
|
4 |
Barenblatt, G. (1959), "The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axiallysymmetric cracks", J. Appl. Math. Mech., 23(3), 622-636.
DOI
|
5 |
Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7(1), 55-129.
|
6 |
Bocciarelli, M., Colombi, P., Fava, G. and Sonzogni, L. (2016), "Energy-based analytical formulation for the prediction of end debonding in strengthened steel beams", Compos. Struct., 153, 212-221.
DOI
|
7 |
Camanho, P.P., Davila, C.G. and De Moura, M.F. (2003), "Numerical simulation of mixed-mode progressive delamination in composite materials", J. Compos. Mater., 37(16), 1415-1438.
DOI
|
8 |
Chaboche, J.L., Girard, R. and Schaff, A. (1997), "Numerical analysis of composite systems by using interphase/interface models", Comput. Mech., 20(1), 3-11.
DOI
|
9 |
Davidson, B.D., Sun, X. and Vinciquerra, A.J. (2007), "Influences of friction, geometric nonlinearities, and fixture compliance on experimentally observed toughnesses from three and four-point bend end-notched flexure tests", J. Compos. Mater., 41(10), 1177-1196.
DOI
|
10 |
Cui, W., Wisnom, M.R. and Jones, M. (1994), "An experimental and analytical study of delamination of unidirectional specimens with cut central plies", J. Reinf. Plast. Compos., 13(8), 722-739.
DOI
|
11 |
Girot, F., Dau, F. and Gutierrez-Orrantia, M.E. (2017), "New analytical model for delamination of CFRP during drilling", J. Mater. Process. Technol., 240, 332-343.
DOI
|
12 |
Kim, N., Kim, Y.H. and Kim, H.S. (2015), "Experimental and analytical investigations for behaviors of RC beams strengthened with tapered CFRPs", Struct. Eng. Mech., Int. J., 53(6), 1067-1081.
DOI
|
13 |
Hosseini-Toudeshky, H., Goodarzi, M.S. and Mohammadi, B. (2013), "Prediction of through the width delamination growth in post-buckled laminates under fatigue loading using de-cohesive law", Struct. Eng. Mech., Int. J., 48(1), 41-56.
DOI
|
14 |
Hosseini-Toudeshky, H., Jahanmardi, M. and Goodarzi, M.S. (2015), "Progressive debonding analysis of composite blade root joint of wind turbines under fatigue loading", Compos. Struct., 120, 417-427.
DOI
|
15 |
Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., Int. J., 17(4), 387-403.
DOI
|
16 |
Krueger, R. (2004), "Virtual crack closure technique: history, approach, and applications", Appl. Mech. Rev., 57(2), 109-143.
DOI
|
17 |
Lin, G., Geubelle, P.H. and Sottos, N.R. (2001), "Simulation of fiber debonding with friction in a model composite pushout test", Int. J. Solids Struct., 38(46), 8547-8562.
DOI
|
18 |
Shi, Y. and Soutis, C. (2016), "Modelling transverse matrix cracking and splitting of cross-ply composite laminates under four point bending", Theor. Appl. Fract. Mech., 83, 73-81.
DOI
|
19 |
Van Paepegem, W., De Baere, I. and Degrieck, J. (2006), "Modelling the nonlinear shear stress-strain response of glass fibre-reinforced composites. Part I: Experimental results", Compos. Sci. Technol., 66(10), 1455-1464.
DOI
|
20 |
Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Eng. Fract. Mech., 9(4), 931-938.
DOI
|
21 |
Shiming, C. and Huifen, Z. (2012), "Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface", Steel Compos. Struct., Int. J., 13(3), 277-293.
DOI
|
22 |
Sun, X. and Davidson, B.D. (2005), "A direct energy balance approach for determining energy release rates in three and four point bend end notched flexure tests", Int. J. Fract., 135(1), 51-72.
DOI
|
23 |
Sun, X. and Davidson, B.D. (2006), "Numerical evaluation of the effects of friction and geometric nonlinearities on the energy release rate in three-and four-point bend end-notched flexure tests", Eng. Fract. Mech., 73(10), 1343-1361.
DOI
|
24 |
Turon, A., Costa, J., Camanho, P.P. and Davila, C.G. (2007), "Simulation of delamination in composites under high-cycle fatigue", Compos. Part A Appl. Sci. Manuf., 38(11), 2270-2282.
DOI
|
25 |
Tvergaard, V. (1990), "Effect of fibre debonding in a whiskerreinforced metal", Mater. Sci. Eng. A., 125(2), 203-213.
DOI
|
26 |
van der Meer, F.P.P. and Sluys, L.J.J. (2013), "A numerical investigation into the size effect in the transverse crack tension test for mode II delamination", Compos. Part A Appl. Sci. Manuf., 54, 145-152.
DOI
|
27 |
Wisnom, M.R. (1992), "On the increase in fracture energy with thickness in delamination of unidirectional glass fibre-epoxy with cut central plies", J. Reinf. Plast. Compos., 11(8), 897-909.
DOI
|