• 제목/요약/키워드: ginsenoside compound K

검색결과 170건 처리시간 0.032초

Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract

  • Kim, Hyung-Ki
    • Journal of Ginseng Research
    • /
    • 제37권4호
    • /
    • pp.451-456
    • /
    • 2013
  • Compound K is a major metabolite of ginsenoside Rb1, which has various pharmacological activities in vivo and in vitro. However, previous studies have focused on the pharmacokinetics of a single metabolite or the parent compound and have not described the pharmacokinetics of both compounds in humans. To investigate the pharmacokinetics of ginsenoside Rb1 and compound K, we performed an open-label, single-oral dose pharmacokinetic study using Korean Red Ginseng extract. We enrolled 10 healthy Korean male volunteers in this study. Serial blood samples were collected during 36 h after Korean Red Ginseng extract administration to determine plasma concentrations of ginsenoside Rb1 and compound K. The mean maximum plasma concentration of compound K was $8.35{\pm}3.19$ ng/mL, which was significantly higher than that of ginsenoside Rb1 ($3.94{\pm}1.97$ ng/mL). The half-life of compound K was 7 times shorter than that of ginsenoside Rb1. These results suggest that the pharmacokinetics, especially absorption, of compound K are not influenced by the pharmacokinetics of its parent compound, except the time to reach the maximum plasma concentration The delayed absorption of compound K support the evidence that the intestinal microflora play an important role in the transformation of ginsenoside Rb1 to compound K.

Biotransformation of Ginseng Extract to Cytotoxic Compound K and Ginsenoside $Rh_2$ by Human Intestinal Bacteria

  • Bae, Eun-Ah;Choo, Min-Kyung;Lee, Young-Churl;Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • 제10권6호
    • /
    • pp.347-352
    • /
    • 2004
  • When saponin extracts of dried ginseng and red ginseng were anaerobically incubated with human intestinal microflora, these extracts were metabolized to compound K and ginsenoside $Rh_2$, respectively. However, when these extracts were incubated with commercial lactic acid bacteria, these did not metabolize these ginsenosides to compound K or ginsenoside $Rh_2$. Among some intestinal bacteria isolated from human feces, Bacteroides C-35 and C-36 transformed these saponin extracts to compound K and ginsenoside $Rh_2$, respectively. These bacteria also transformed water extracts of dried ginseng and red ginseng to compound K and ginsenoside $Rh_2$, respectively, similarly with that of the saponin extracts. Among transformed ginsenosides, compound K and 20(S)-ginsenoside $Rh_2$ exhibited the most potent cyotoxicity against tumor cells.

Isolation of Ginsenoside Rh1 and Compound K from Fermented Ginseng and Efficacy Assessment on Systemic Anaphylactic Shock

  • Kim, Mi-Soon;Kwon, Bin;Park, Myeong-Soo;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.805-808
    • /
    • 2008
  • Ginsenosides are responsible for the pharmacological and biological activities of ginseng. In this study, ginsenoside Rh1 and compound K were isolated and purified from fermented ginseng substrate and their anti-allergic effects were assessed in compound 48/80-induced anaphylactic shock model. The fermented ginseng substrate was extracted by methanol and ginsenoside Rh1 and compound K were efficiently purified by preparative high performance liquid chromatography (prep HPLC). Their quality and quantity were analyzed by liquid chromatography-mass spectrometer (LC-MS) and HPLC. Ginsenoside Rh1 showed better anti-allergic effects than compound K in compound 48/80-induced anaphylactic shock model. This study suggested that fermented ginseng extracts with enriched Rh1 may be utilized as a potential biomaterial of functional food for the alleviation of allergic symptoms.

Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea

  • Upadhyaya, Jitendra;Kim, Min-Ji;Kim, Young-Hoi;Ko, Sung-Ryong;Park, Hee-Won;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.105-112
    • /
    • 2016
  • Background: Minor saponins or human intestinal bacterial metabolites, such as ginsenosides Rg3, F2, Rh2, and compound K, are more pharmacologically active than major saponins, such as ginsenosides Rb1, Rb2, and Rc. In this work, enzymatic hydrolysis of ginsenoside Rb1 was studied using enzyme preparations from cultured mycelia of mushrooms. Methods: Mycelia of Armillaria mellea, Ganoderma lucidum, Phellinus linteus, Elfvingia applanata, and Pleurotus ostreatus were cultivated in liquid media at $25^{\circ}C$ for 2 wk. Enzyme preparations from cultured mycelia of five mushrooms were obtained by mycelia separation from cultured broth, enzyme extraction, ammonium sulfate (30-80%) precipitation, dialysis, and freeze drying, respectively. The enzyme preparations were used for enzymatic hydrolysis of ginsenoside Rb1. Results: Among the mushrooms used in this study, the enzyme preparation from cultured mycelia of A. mellea (AMMEP) was found to convert ginsenoside Rb1 into compound K with a high yield, while those from G. lucidum, P. linteus, E. applanata, and P. ostreatus produced remarkable amounts of ginsenoside Rd from ginsenoside Rb1. The enzymatic hydrolysis pathway of ginsenoside Rb1 by AMMEP was $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$ compound K. The optimum reaction conditions for compound K formation from ginsenoside Rb1 were as follows: reaction time 72-96 h, pH 4.0-4.5, and temperature $45-55^{\circ}C$. Conclusion: AMMEP can be used to produce the human intestinal bacterial metabolite, compound K, from ginsenoside Rb1 with a high yield and without food safety issues.

김치에서 분리한 Lactobacillus brevis THK-D57에 의한 인삼 사포닌의 생물학적 전환 (Biotransformation of Ginsenoside by Lactobacillus brevis THK-D57 Isolated from Kimchi)

  • 이은지;이정민;이태후;조석철;박용진;국무창
    • 한국식품영양학회지
    • /
    • 제25권3호
    • /
    • pp.629-636
    • /
    • 2012
  • Ginsenosides, ginseng saponin, are the principal components responsible for the pharmacological and biological activities of ginseng. In order to improve absorption and biological activities, the biotransformation of major ginsenoside to minor ginsenoside, as the more active compound, is required. In this study, we isolated Lactobacillus brevis THK-D57, which has high ${\beta}$-glycosidase activity, from Kimchi. The major ginsenoside Rb1 was converted to the minor ginsenoside 'compound K' during the fermentation of L. brevis THK-D57. The results propose that the biotransformation pathway to produce compound K is as follows: ginsenoside $Rb_1{\rightarrow}ginsenoside$ $Rd{\rightarrow}ginsenoside$ $F_2{\rightarrow}ginsenoside$ compound K.

Biotransformation of Ginsenoside Rb1 to Prosapogenins, Gypenoside XVII, Ginsenoside Rd, Ginsenoside F2, and Compound K by Leuconostoc mesenteroides DC102

  • Quan, Lin-Hu;Piao, Jin-Ying;Min, Jin-Woo;Kim, Ho-Bin;Kim, Sang-Rae;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.344-351
    • /
    • 2011
  • Ginsenoside $Rb_1$ is the main component in ginsenosides. It is a protopanaxadiol-type ginsenoside that has a dammarane-type triterpenoid as an aglycone. In this study, ginsenoside $Rb_1$ was transformed into gypenoside XVII, ginsenoside Rd, ginsenoside $F_2$ and compound K by glycosidase from Leuconostoc mesenteroides DC102. The optimum time for the conversion was about 72 h at a constant pH of 6.0 to 8.0 and the optimum temperature was about $30^{\circ}C$. Under optimal conditions, ginsenoside $Rb_1$ was decomposed and converted into compound K by 72 h post-reaction (99%). The enzymatic reaction was analyzed by highperformance liquid chromatography, suggesting the transformation pathway: ginsenoside $Rb_1$ ${\rightarrow}$ gypenoside XVII and ginsenoside Rd${\rightarrow}$ginsenoside $F_2{\rightarrow}$compound K.

Cytotoxicity of Compound K and Ginsenoside $R_{h2}$ against some tumor cells

  • Shin, Ji-Eun;Park, Eun-Kyung;Hong, Yoon-Hee;Kim, Eun-Jin;Lee, Kyung-Tae;Kim, Dong-Hyun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.160.2-160.2
    • /
    • 2003
  • When ginsenoside $R_{b1}$ and $R_{b2}$ were anaerobically incubated with human fecal microflora, these ginsenosides were metabolized to compound K. When ginsenoside $R_{g3}$ was anaerobically incubated with human fecal microflora, the ginsenoside $R_{g3}$ was metabolized it to ginsenoside $R_{h2}$. Among ginsenosides, compound K and 20(S)-ginsenoside $R_h2$ exhibited the most potent cyotoxicity against tumor cells: 50% cytotoxic concentrations of compound K in the media with and without fetal bovine serum (FBS) were 27.1 - 31.6 mM and0.1 - 0.6 mM, and those of 20(S)-ginsenoside $R_h2$ were 37.5 $\rightarrow$ 50 and 0.7 - 7.1 mM mM, respectively. (omitted)

  • PDF

Cytotoxicity of Compound K (IH-901) and Ginsenoside Rh2, Main Biotransformants of Ginseng Saponins by Bifidobacteria, against Some Tumor Cells

  • Shin, Ji-Eun;Park, Eun-Kyung;Kim, Eun-Jin;Hong, Yoon-Hee;Lee, Kyung-Tae;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제27권3호
    • /
    • pp.129-134
    • /
    • 2003
  • When ginsenoside $R_{*}$b1/ and $R_{b2}$ were anaerobically incubated with human fecal microflora, these ginsenosides were metabolized to compound K (IH-901). When ginsenoside $R_{g3}$ was anaerobically incubated with human fecal microflora, the ginsenoside $R_{g3}$ was metabolized it to ginsenoside $R_{h2}$. Among ginsenosides, IH-901 and 20(S)-ginsenoside $R_{h2}$ exhibited the most potent cyotoxicity against tumor cells: 50% cytotoxic concentrations of IH-901 in the media with and without fetal bovine serum (FBS) were 27.1-31.6 $\mu$M and 0.1-0.61 $\mu$M, and those of 20(S)-ginsenoside $R_{h2}$ were 37.5->50 and 0.7-7.1 $\mu$M, respectively. The cytotoxic potency of ginsenosides was IH-901>20(S)-ginsenoside R $h_{h2}$》20(S)-ginsenoside $R_{g3}$>ginsenoside $R_{b1}$(equation omitted) $R_{b2}$.EX>$R_{b2}$./.

Bioconversion of Ginsenoside Rd into Compound K by Lactobacillus pentosus DC101 Isolated from Kimchi

  • Quan, Lin-Hu;Cheng, Le-Qin;Kim, Ho-Bin;Kim, Ju-Han;Son, Na-Ri;Kim, Se-Young;Jin, Hyun-O;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제34권4호
    • /
    • pp.288-295
    • /
    • 2010
  • Ginsenosides are the principal components responsible for the pharmacological and biological activities of ginseng. Ginsenoside Rd was transformed into compound K using cell-free extracts of food microorganisms, with Lactobacillus pentosus DC101 isolated from kimchi (traditional Korean fermented food) used for this conversion. The optimum time for the conversion was about 72 h at a constant pH of 7.0 and an optimum temperature of about $30^{\circ}C$. The transformation products were identified by thin-layer chromatography and high-performance liquid chromatography, and their structures were assigned using nuclear magnetic resonance analysis. Generally, ginsenoside Rd was converted into ginsenoside F2 by 36 h post-reaction. Consequently, over 97% of ginsenoside Rd was decomposed and converted into compound K by 72 h post-reaction. The bioconversion pathway to produce compound K is as follows: ginsenoside Rd$\rightarrow$ginsenoside F2$\rightarrow$compound K.

Lactobacillus brevis LH8이 생산하는 효소에 의한 Ginsenoside Rd의 Compound K로의 전환 (Conversion of Ginsenoside Rd to Compound K by Crude Enzymes Extracted from Lactobacillus brevis LH8)

  • 전림호;양지제;김호빈;김세화;김세영;노영덕;양덕춘
    • Journal of Ginseng Research
    • /
    • 제32권3호
    • /
    • pp.226-231
    • /
    • 2008
  • 인삼사포닌 ginsenoside는 인삼의 주요한 약리성분으로 인삼을 경구투여 시 major 사포닌의 생체 내에서의 흡수는 매우 낮아 인삼사포닌의 약효를 증대시키기 위해서 기존에 많이 존재하는 major 사포닌을 상대적으로 흡수도 잘 되며 약효도 더 뛰어난 minor 사포닌으로의 전환이 요구된다. 본 연구는 김치에서 분리한 ${\beta}-glucosidase$ 활성균주 L. brevis LH8이 분비하는 효소를 이용하여 ginsenoside Rd를 compound K로 전환시켰다. L. brevis LH8의 효소액은 반응 온도 $30^{\circ}C$에서 효소활성이 가장 좋았고 $35^{\circ}C$이상에서는 활성이 급격히 저하되었으며, pH $6.0{\sim}12.0$ 사이에서 효소활성이 가장 좋았고, pH 5.0 이하 및 pH 13.0 이상에서는 활성도가 떨어지는 것을 관찰할 수 있었다. 또한 ginsenoside Rd는 반응 48시간부터 ginsenoside F2로 전환되기 시작하였으며, 반응 72 시간 이후에는 대부분 compound K로 전환되었다.