Browse > Article
http://dx.doi.org/10.5142/jgr.2011.35.3.344

Biotransformation of Ginsenoside Rb1 to Prosapogenins, Gypenoside XVII, Ginsenoside Rd, Ginsenoside F2, and Compound K by Leuconostoc mesenteroides DC102  

Quan, Lin-Hu (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University)
Piao, Jin-Ying (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University)
Min, Jin-Woo (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University)
Kim, Ho-Bin (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University)
Kim, Sang-Rae (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University)
Yang, Dong-Uk (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University)
Yang, Deok-Chun (Korean Ginseng Center Most Valuable Product and Ginseng Genetic Resource Bank, Kyung Hee University)
Publication Information
Journal of Ginseng Research / v.35, no.3, 2011 , pp. 344-351 More about this Journal
Abstract
Ginsenoside $Rb_1$ is the main component in ginsenosides. It is a protopanaxadiol-type ginsenoside that has a dammarane-type triterpenoid as an aglycone. In this study, ginsenoside $Rb_1$ was transformed into gypenoside XVII, ginsenoside Rd, ginsenoside $F_2$ and compound K by glycosidase from Leuconostoc mesenteroides DC102. The optimum time for the conversion was about 72 h at a constant pH of 6.0 to 8.0 and the optimum temperature was about $30^{\circ}C$. Under optimal conditions, ginsenoside $Rb_1$ was decomposed and converted into compound K by 72 h post-reaction (99%). The enzymatic reaction was analyzed by highperformance liquid chromatography, suggesting the transformation pathway: ginsenoside $Rb_1$ ${\rightarrow}$ gypenoside XVII and ginsenoside Rd${\rightarrow}$ginsenoside $F_2{\rightarrow}$compound K.
Keywords
Biotransformation; Gypenoside XVII; Ginsenoside Rd; Compound K; Leuconostoc mesenteroides DC102;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Park SY, Bae EA, Sung JH, Lee SK, Kim DH. Purification and characterization of ginsenoside $Rb_{1}$-metabolizing beta-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem 2001;65:1163-1169.   DOI   ScienceOn
2 Shin JE, Park EK, Kim EJ, Hong YH, Lee KT, Kim DH. Cytotoxicity of compound K (IH-901) and ginsenoside $Rh_{2}$, main biotransformants of ginseng saponins by bifidobacteria, against some tumor cells. J Ginseng Res 2003;27:129-134.   과학기술학회마을   DOI   ScienceOn
3 Chi H, Ji GE. Transformation of ginsenosides $Rb_{1}$ and Re from Panax ginseng by food microorganisms. Biotechnol Lett 2005;27:765-771.   DOI   ScienceOn
4 Cheng LQ, Kim MK, Lee JW, Lee YJ, Yang DC. Conversion of major ginsenoside $Rb_{1}$ to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett 2006;28:1121-1127.   DOI
5 Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC. Microbial conversion of ginsenoside $Rb_{1}$ to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol 2007;17:1937- 1943.
6 Wang BX, Cui JC, Liu AJ, Wu SK. Studies on the anti-fatigue effect of the saponins of stems and leaves of Panax ginseng (SSLG). J Tradit Chin Med 1983;3:89-94.
7 Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Ser 1999;41:95-98.
8 Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596-1599.   DOI   ScienceOn
9 Shibata S, Tanaka O, Soma K, Ando T, Iida Y, Nakamura H. Studies on saponins and sapogenins of ginseng. The structure of panaxatriol. Tetrahedron Lett 1965;42:207-213.
10 Quan LH, Cheng LQ, Kim HB, Kim JH, Son NR, Kim SY, Jin HO, Yang DC. Bioconversion of ginsenoside Rd into compound K by Lactobacillus pentosus DC101 isolated from Kimchi. J Ginseng Res 2010;34:288-295.   과학기술학회마을   DOI   ScienceOn
11 Dong A, Ye M, Guo H, Zheng J, Guo D. Microbial transformation of ginsenoside $Rb_{1}$ by Rhizopus stolonifer and Curvularia lunata. Biotechnol Lett 2003;25:339-344.   DOI   ScienceOn
12 Kim SD, Seu JH. Enzymatic properties of the convertible enzyme of ginseng saponin produced from Rhizopus japonicus. Korean J Appl Microbiol Bioeng 1989;17:126- 130.   과학기술학회마을
13 Zhang D, Liu Y, Yu H, Jin F, Chen G. Purification of ginsenoside $\beta$-glucosidase hydrolase and ITS characteristics. Chin J Appl Environ Biol 2003;9:259-262.
14 Sano K, Amemura A, Harada T. Purification and properties of a beta-1,6-clucosidase from Flavobacterium. Biochim Biophys Acta 1975;377:410-420.   DOI   ScienceOn
15 Yoshioka H, Hayashida S. Purification and properties of $\beta$-glucosidase from Humicola insolens YH-8. Agric. Biol Chem 1980;44:1729-1735.   DOI
16 Karikura M, Miyase T, Tanizawa H, Takino Y, Taniyama T, Hayashi T. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V. The decomposition products of ginsenoside $Rb_{2}$ in the large intestine of rats. Chem Pharm Bull (Tokyo) 1990;38:2859-2861.   DOI   ScienceOn
17 Paek IB, Moon Y, Kim J, Ji HY, Kim SA, Sohn DH, Kim JB, Lee HS. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm Drug Dispos 2006;27:39-45.   DOI   ScienceOn
18 Wakabayashi C, Murakami K, Hasegawa H, Murata J, Saiki I. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun 1998;246:725-730.   DOI   ScienceOn
19 Hasegawa H, Uchiyama M. Antimetastatic efficacy of orally administered ginsenoside $Rb_{1}$ in dependence on intestinal bacterial hydrolyzing potential and significance of treatment with an active bacterial metabolite. Planta Med 1998;64:696-700.   DOI   ScienceOn
20 Lee BH, Lee SJ, Hur JH, Lee S, Sung JH, Huh JD, Moon CK. In vitro antigenotoxic activity of novel ginseng saponin metabolites formed by intestinal bacteria. Planta Med 1998;64:500-503.   DOI   ScienceOn
21 Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull 2002;25:743-747.   DOI   ScienceOn
22 Oh SH, Lee BH. A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage. Toxicol Appl Pharmacol 2004;194:221-229.   DOI   ScienceOn
23 Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 2000;63:1702-1704.   DOI   ScienceOn
24 Odani T, Tanizawa H, Takino Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. III. The absorption, distribution and excretion of ginsenoside $Rb_{1}$ in the rat. Chem Pharm Bull (Tokyo) 1983;31:1059-1066.   DOI   ScienceOn
25 Boo YJ, Park JM, Kim J, Suh SO. Prospective study for Korean red ginseng extract as an immune modulator following a curative surgery in patients with advanced colon cancer. J Ginseng Res 2007;31:54-59.   과학기술학회마을   DOI   ScienceOn
26 Wu JY, Gardner BH, Murphy CI, Seals JR, Kensil CR, Recchia J, Beltz GA, Newman GW, Newman MJ. Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J Immunol 1992;148:1519-1525.
27 Wang BX, Cui JC, Liu AJ, Wu SK. Studies on the anti-fa-tigue effect of the saponins of stems and leaves of Panax ginseng (SSLG). J Tradit Chin Med 1983;3:89-94.
28 Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside $Rb_{1}$ by intestinal bacteria, in rat plasma after oral administration- -measurement of compound K by enzyme immunoassay. Biol Pharm Bull 1998;21:245-249.   DOI   ScienceOn