• Title/Summary/Keyword: gf

Search Result 957, Processing Time 0.022 seconds

Low System Complexity Bit-Parallel Architecture for Computing $AB^2+C$ in a Class of Finite Fields $GF(2^m)$ (시스템 복잡도를 개선한 $GF(2^m)$ 상의 병렬 $AB^2+C$ 연산기 설계)

  • 변기령;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.24-30
    • /
    • 2003
  • This study focuses on the arithmetical methodology and hardware implementation of low system-complexity A $B^2$+C operator over GF(2$^{m}$ ) using the irreducible AOP of degree m. The proposed parallel-in parallel-out operator is composed of CS, PP, and MS modules, each can be established using the array structure of AND and XOR gates. The proposed multiplier is composed of (m+1)$^2$ 2-input AND gates and (m+1)(m+2) 2-input XOR gates. And the minimum propagation delay is $T_{A}$ +(1+$\ulcorner$lo $g_2$$^{m}$ $\lrcorner$) $T_{x}$ . Comparison result of the related A $B^2$+C operators of GF(2$^{m}$ ) are shown by table, It reveals that our operator involve more lower circuit complexity and shorter propagation delay then the others. Moreover, the interconnections of the out operators is very simple, regular, and therefore well-suited for VLSI implementation.

Digit-Serial Finite Field Multipliers for GF($3^m$) (GF($3^m$)의 Digit-Serial 유한체 곱셈기)

  • Chang, Nam-Su;Kim, Tae-Hyun;Kim, Chang-Han;Han, Dong-Guk;Kim, Ho-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.23-30
    • /
    • 2008
  • Recently, a considerable number of studies have been conducted on pairing based cryptosystems. The efficiency of pairing based cryptosystems depends on finite fields, similar to existing public key cryptosystems. In general, pairing based ctyptosystems are defined over finite fields of chracteristic three, GF($3^m$), based on trinomials. A multiplication in GF($3^m$) is the most dominant operation. This paper proposes a new most significant digit(MSD)-first digit- serial multiplier. The proposed MSD-first digit-serial multiplier has the same area complexity compared to previous multipliers, since the modular reduction step is performed in parallel. And the critical path delay is reduced from 1MUL+(log ${\lceil}n{\rceil}$+1)ADD to 1MUL+(log ${\lceil}n+1{\rceil}$)ADD. Therefore, when the digit size is not $2^k$, the time delay is reduced by one addition.

Design of High-Speed Parallel Multiplier with All Coefficients 1's of Primitive Polynomial over Finite Fields GF(2m) (유한체 GF(2m)상의 기약다항식의 모든 계수가 1을 갖는 고속 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, we propose a new multiplication algorithm for two polynomials using primitive polynomial with all 1 of coefficient on finite fields GF($2^m$), and design the multiplier with high-speed parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $m^2$ same basic cells that have a 2-input XOR gate and a 2-input AND gate. Since the basic cell have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $D_A+D_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

Effect of Post-Annealing Condition on the Peel Strength of Screen-printed Ag Film and Polyimide Substrate (후속 열처리조건이 스크린 프린팅 Ag 박막과 폴리이미드 사이의 필강도에 미치는 영향)

  • Bae, Byung-Hyun;Lee, Hyeonchul;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.69-74
    • /
    • 2017
  • Effect of post-annealing treatment times at $200^{\circ}C$ on the peel strength of screen-printed Ag film/polyimide substrate were systematically investigated by $180^{\circ}$ peel test for thermal reliability assessment of printed interconnect. Initial peel strength around 16.7 gf/mm increased up to 29.4 gf/mm after annealing for 24hours, and then sharply decreased to 22.3, 3.6, 0.6, and 0.1 gf/mm after 48, 100, 250, and 500 hours, respectively. Ag-O-C chemical bonding as well as binder organic bridges formations seemed to be responsible for interfacial adhesion improvement after the initial annealing treatment, while excessive Cu oxide formation at Cu/Ag interface seems to be closely related to sharp decrease in peel strength for longer annealing times.

Design of MSB-First Digit-Serial Multiplier for Finite Fields GF(2″) (유한 필드 $GF(2^m)$상에서의 MSB 우선 디지트 시리얼 곱셈기 설계)

  • 김창훈;한상덕;홍춘표
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.625-631
    • /
    • 2002
  • This paper presents a MSB-first digit-serial systolic array for computing modular multiplication of A(x)B(x) mod G(x) in finite fields $GF(2^m)$. From the MSB-first multiplication algorithm in $GF(2^m)$, we obtain a new data dependence graph and design an efficient digit-serial systolic multiplier. For circuit synthesis, we obtain VHDL code for multiplier, If input data come in continuously, the implemented multiplier can produce multiplication results at a rate of one every [m/L] clock cycles, where L is the selected digit size. The analysis results show that the proposed architecture leads to a reduction of computational delay time and it has much more simple structure than existing digit-serial systolic multiplier. Furthermore, since the propose architecture has the features of unidirectional data flow and regularity, it shows good extension characteristics with respect to m and L.

VLSI Architecture for High Speed Implementation of Elliptic Curve Cryptographic Systems (타원곡선 암호 시스템의 고속 구현을 위한 VLSI 구조)

  • Kim, Chang-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.15C no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In this paper, we propose a high performance elliptic curve cryptographic processor over $GF(2^{163})$. The proposed architecture is based on a modified Lopez-Dahab elliptic curve point multiplication algorithm and uses Gaussian normal basis for $GF(2^{163})$ field arithmetic. To achieve a high throughput rates, we design two new word-level arithmetic units over $GF(2^{163})$ and derive a parallelized elliptic curve point doubling and point addition algorithm with uniform addressing based on the Lopez-Dahab method. We implement our design using Xilinx XC4VLX80 FPGA device which uses 24,263 slices and has a maximum frequency of 143MHz. Our design is roughly 4.8 times faster with 2 times increased hardware complexity compared with the previous hardware implementation proposed by Shu. et. al. Therefore, the proposed elliptic curve cryptographic processor is well suited to elliptic curve cryptosystems requiring high throughput rates such as network processors and web servers.

COMPARISON OF THE PHYSICAL PROPERTIES BETWEEN GALLIUM ALLOY AND HIGH COPPER AMALGAM ALLOYS (갈륨합금과 고동 아말감 합금의 물리적 성질 비교)

  • Kim, Hyeon-Cheol;Lee, Hee-Joo;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.278-287
    • /
    • 1998
  • The purpose of this study was to compare the physical properties between high copper amalgam and gallium restorative material. In this study, the specimens for the 4 experimatal groups (Valiant, Valiant PhD, Gallium Alloy GF II. Gallium Alloy GF II triturated with some addition of alcohol) were prepared in the manner of which stated in ADA specification No.1 for amalgam alloy. And then, measured and compared the value of compressive strength. creep, and dimensional change during hardening of each sample. The results were as follows: 1. In the compressive strength, the Valiant-lathe cut type high copper amalgam-had the highest value of strength(p<0.05), and the Valiant PhD-admixed type high copper amalgam-showed the higher value of strength than the Gallium Alloy GF II(p<0.05) but had no significant difference with Gallium Alloy GF II triturated with some addition of alcohol(p>0.05). 2. In the creep. the Valiant PhD showed the highest value of creep (p<0.05), but there was no significant difference between Gallium Alloy GF II and Valiant(p>0.05). 3. In the dimensional change during hardening, no two groups were significantly different at the 0.050 level. 4. There was no significant difference between Gallium Alloy GF II and the same material which was triturated with some addition of alcohol(p>0.05).

  • PDF

Design of Bit-Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 비트-병렬 곱셈기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1209-1217
    • /
    • 2008
  • In this paper, we present a new bit-parallel multiplier for performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the vector code generator(VCG) to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of VCG have two AND gates and two XOR gates. Using these VCG, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the VCGs with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI.

On algorithm for finding primitive polynomials over GF(q) (GF(q)상의 원시다항식 생성에 관한 연구)

  • 최희봉;원동호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.35-42
    • /
    • 2001
  • The primitive polynomial on GF(q) is used in the area of the scrambler, the error correcting code and decode, the random generator and the cipher, etc. The algorithm that generates efficiently the primitive polynomial on GF(q) was proposed by A.D. Porto. The algorithm is a method that generates the sequence of the primitive polynomial by repeating to find another primitive polynomial with a known primitive polynomial. In this paper, we propose the algorithm that is improved in the A.D. Porto algorithm. The running rime of the A.D. Porto a1gorithm is O($\textrm{km}^2$), the running time of the improved algorithm is 0(m(m+k)). Here, k is gcd(k, $q^m$-1). When we find the primitive polynomial with m odor, it is efficient that we use the improved algorithm in the condition k, m>>1.

The Optimal Normal Elements for Massey-Omura Multiplier (Massey-Omura 승산기를 위한 최적 정규원소)

  • 김창규
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.3
    • /
    • pp.41-48
    • /
    • 2004
  • Finite field multiplication and division are important arithmetic operation in error-correcting codes and cryptosystems. The elements of the finite field GF($2^m$) are represented by bases with a primitive polynomial of degree m over GF(2). We can be easily realized for multiplication or computing multiplicative inverse in GF($2^m$) based on a normal basis representation. The number of product terms of logic function determines a complexity of the Messay-Omura multiplier. A normal basis exists for every finite field. It is not easy to find the optimal normal element for a given primitive polynomial. In this paper, the generating method of normal basis is investigated. The normal bases whose product terms are less than other bases for multiplication in GF($2^m$) are found. For each primitive polynomial, a list of normal elements and number of product terms are presented.