References
- V.S. Miller, "Use of Elliptic Curves in Cryptography," in Advances in Cryptology-Proc. of CRYPTO'85, pp.417-426, 1986
- N. Koblitz, "Elliptic Curve Cryptosystems," Mathematics of Computation, vol.48, pp.203-209, 1987 https://doi.org/10.2307/2007884
- M. Rosing, Implementing Elliptic Curve Cryptography, Manning, 1999
- D. Hankerson, J. Hernandez, and A. Menezes, "Software Implementation of Elliptic Curve Cryptography Over Binary Fields," Proc. of CHES 2000, Lecture Notes in Computer Science, Vol.1965, pp.1-24, 2000 https://doi.org/10.1007/3-540-44499-8_1
- A. Satoh and K. Takano, "A Scalable Dual-Field Elliptic Curve Cryptographic Processor," IEEE Trans. on Computers, Vol.52, No.4, pp.449-460, Apr. 2003 https://doi.org/10.1109/TC.2003.1190586
-
G. Orlando and C. Parr, "A High Performance Reconfigurable Elliptic Curve Processor for GF
$(2^m)^n$ ," CHES 2000, Lecture Notes in Computer Science, Vol.1965, 2000 - C. Shu, K. Gaj, and T. El-Ghazawi, "Low Latency Elliptic Curve Cryptography Accelerators for NIST Curves over Binary Fields," FPT 2005 1965, pp.309-310, 2005
- N. Gura, S.C. Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein, E. Goupy, and D. Stebila, "An End-to-End Systems Approach to Elliptic Curve Cryptography," CHES 2002, Lecture Notes in Computer Science, Vol.2523, pp. 349-365, 2002
- A. K. Daneshbeh, M. A. Hasan, "Area efficient high speed elliptic curve cryptoprocessor for random curves," IEEE Symposium on Information Technology: Coding and Computing (ITCC), Vol.2, pp.588-592, 2004
-
H. Eberle, N. Gura, S. Chang-Shantz, and Vipul Gupta, "A cryptographic processor for arbitrary elliptic curves over
$(2^m)^n$ ," Application-Specific Systems, Architectures, and Processors (ASAP), pp.444-454, 2003 - C. Grabbe, M. Bednara, J. von zur Gathen, J. Shokrollahi, J. Teich, "A high performance vliw processor for finite field arithmetic," Reconfigurable Architectures Workshop (RAW), 2003
- K. J.rvinen, M. Tommiska, J. Skytt., "A scalable architecture for elliptic curve point multiplication," IEEE Field- Programmable Technology (FPT), pp.303-306, 2004
-
N.A. Saqib, F. Rodriguez-Henriquez, A. Diaz-Pierez, "A parallel architecture for fast computation of elliptic curve scalar multiplication over
$(2^m)^n$ ," Parallel & Distributed Processing Symposium (IPDPS), 2004 - IEEE 1363, Standard Specifications for Publickey Cryptography, 2000
- NIST, Recommended elliptic curves for federal government use, May 1999. http://csrc.nist.gov/encryption
- A.J. Menezes, I.F. Blake, X. Gau, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of Finite Fields, Kluwer Academic Publisher, 1993
-
S. Kwon, K. Gaj, C. H. Kim, and C. P. Hong, "Efficient Linear Array for Multiplication in
$(2^m)^n$ Using a Normal Basis for Elliptic Curve Cryptography," CHES 2004 Lecture Notes in Computer Science, Vol.3156, pp.76-91, 2004 -
J. Lopez and R. Dahab, "Fast Multiplication on Elliptic Curves over
$(2^m)^n$ without Precomputation," CHES 1999, Lecture Notes in Computer Science, Vol.1717, pp.316-327, 1999 https://doi.org/10.1007/3-540-48059-5_27 -
T. Itoh and S. Tsuji, "A fast algorithm for computing multiplicative inverses
$GF(2^m)$ in using normal bases," Information and Computing, Vol.78, No.3, pp.171-177, 1988 https://doi.org/10.1016/0890-5401(88)90024-7 - B. Ansari, M. Anwar Hasan, "High Performance Architecture of Elliptic Curve Scalar Multiplication," Tech. Report CACR 2006-01, 2006
-
M. Benaissa and W.M. Lim, "Design of Flexible
$(2^m)^n$ Elliptic Curve Cryptography Processors," IEEE Trans. VLSI Syst., Vol.14, No.6, pp.659-662, June 2006 https://doi.org/10.1109/TVLSI.2006.878235 - C.J. McIvor, M. McLoone, and J.V. McCanny, “Hardware Elliptic Curve Cryptography Processor over GF(p),” IEEE Trans. Circuits Syst. I: Reg. Papers, Vol.53, No.9, pp.1946-1957, Sept. 2006 https://doi.org/10.1109/TCSI.2006.880184
- G. Chen, G. Bai, and H. Chen, “A High-Performance Elliptic Curve Cryptographic Processor for General Curves Over GF(p) Based on a Systolic Arithmetic Unit,” IEEE Trans. Circuits Syst. II: Express Briefs, Vol.54, No.5, pp.412-416, May 2007 https://doi.org/10.1109/TCSII.2006.889459
Cited by
- An RFID Authentication Protocol based Symmetric Key using Hashed Tag ID vol.16C, pp.6, 2009, https://doi.org/10.3745/KIPSTC.2009.16C.6.669