• Title/Summary/Keyword: geometry control

Search Result 766, Processing Time 0.027 seconds

Application in Anchovy Boat Seine of Ship′s Distance Measuring System by the GPS Receiver (GPS 선간거리계측 시스템의 권현망 조업에의 응용)

  • 김광홍;신형일;장충식;안영수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.287-298
    • /
    • 2000
  • The charge of distance and the change of tack between paired boats were measured by ship's distance measuring system fixed MCS in the main boat and MS in the following boat. The operating depth of the anchovy boat seine was recorded and analysed by self memory temperature/depth sensor in order to compare the relationship between the distance between towing boats and geometry of the anchovy boat seine net. The results are as follow, (1) When distance between paired boat was 5m, the fishing net was spreaded down deeply and unstably in accordance with bag net and flapper may be help to pass out anchovy school. (2) When distance between paired boat was 100m, vertical opening of the net was gradually increased with higher slope of towing depth in the square, bosom and flapper. Therefore, fishing efficiency could be decreased by preventing the entering of anchovy due to unstable shape of the bag net. (3) When distance between paired boat was 200m, the geometry of the anchovy seine was stable condition with the end of bag net was up while flapper was down and it may cause bad effect in fishing efficiency. (4) When distance between paired boat was 300m, the shape from wing net to bag net was gradually slow down and stable enough as well as good shape in bag net and flapper. (5) The ship's distance measuring system could be used for measurement and accurate control of distance between paired boat in accordance of anchovy recordings by fish finder in order to get higher fishing efficiency in anchory boat seine operation.

  • PDF

Carcinoma of the Uterine Cervix Treated with External Beam Irradiation Alone (자궁경부암의 외부방사선 치료 성적)

  • Kim, Mi-Sook;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.363-367
    • /
    • 1993
  • A retrospective analysis was peformed on 42 patients with carcinoma of the uterine cervix who were treated with external beam (EB) radiation therapy alone at the Department of Therapeutic Radiology, Seoul National University Hospital from March 1979 to December 1988. After whole pelvic field irradiation of 50Gy, all the patients received additional booster dose of 12-22Gy to the primary tumor Thirty one received EB radiotherapy alone because of poor geometry for intracavitary application,5 because of medical problems and 6 because of other reasons. Five year locoregional control rate and five year survival rate were $34.5\%\;and\;35.4\%,$ respectively. Five year survivals were $66.7\%,\;36.4%,\;32.8\%\;and\;25.0\%$ for stage IIA, IIB, IIIB and IVA, respectively. The response one month after treatment well correlated with prognosis. The incidence of grade 2 and 3 complication was $12\%\;and\;10\%,$ respectively. There was tendency of increased complication with advanced stage.

  • PDF

Investigating the Impact of Random and Systematic Errors on GPS Precise Point Positioning Ambiguity Resolution

  • Han, Joong-Hee;Liu, Zhizhao;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • Precise Point Positioning (PPP) is an increasingly recognized precisely the GPS/GNSS positioning technique. In order to improve the accuracy of PPP, the error sources in PPP measurements should be reduced as much as possible and the ambiguities should be correctly resolved. The correct ambiguity resolution requires a careful control of residual errors that are normally categorized into random and systematic errors. To understand effects from two categorized errors on the PPP ambiguity resolution, those two GPS datasets are simulated by generating in locations in South Korea (denoted as SUWN) and Hong Kong (PolyU). Both simulation cases are studied for each dataset; the first case is that all the satellites are affected by systematic and random errors, and the second case is that only a few satellites are affected. In the first case with random errors only, when the magnitude of random errors is increased, L1 ambiguities have a much higher chance to be incorrectly fixed. However, the size of ambiguity error is not exactly proportional to the magnitude of random error. Satellite geometry has more impacts on the L1 ambiguity resolution than the magnitude of random errors. In the first case when all the satellites have both random and systematic errors, the accuracy of fixed ambiguities is considerably affected by the systematic error. A pseudorange systematic error of 5 cm is the much more detrimental to ambiguity resolutions than carrier phase systematic error of 2 mm. In the $2^{nd}$ case when only a portion of satellites have systematic and random errors, the L1 ambiguity resolution in PPP can be still corrected. The number of allowable satellites varies from stations to stations, depending on the geometry of satellites. Through extensive simulation tests under different schemes, this paper sheds light on how the PPP ambiguity resolution (more precisely L1 ambiguity resolution) is affected by the characteristics of the residual errors in PPP observations. The numerical examples recall the PPP data analysts that how accurate the error correction models must achieve in order to get all the ambiguities resolved correctly.

Measurement Method of Final Residual Radioactivity of Radioactive Metallic Waste for Clearance (규제해제 대상 방사성 금속 폐기물 최종잔류방사능 측정법)

  • Seo, Bumkyoung;Ji, Youngyong;Hong, Sangbum;Lee, Keunwoo;Moon, Jeikwon
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.228-233
    • /
    • 2013
  • It has been continuously generated the requirement for the replacement of the main components such as a steam generator due to the deterioration of the nuclear power plant all around the world. Also, a large amount of radioactive metal was generated during the decommissioning in a short period. It is required to make an accurate measurement of the residual radioactivity for recycling the metal waste for releasing from regulatory control. In planning the measurement procedures, the influence of geometry, self-absorption, density and other relevant factors on the representativeness of the measurements should be considered for the decommissioning metal waste. In this study, the method for measurement procedures, the source term evaluation, the ways to secure representative samples, the measurement device for wide area and the self-absorption correction factors for different density were evaluated. The metal samples for measurement were prepared for securing the simple geometry and representative by melting process. The developed correction method for measuring the radioactivity a variety density of metal waste could improve the reliability of the evaluation results for clearance.

Controlling Factors on the Development and Connectivity of Fracture Network: An Example from the Baekildo Fault in the Goheung Area (단열계의 발달 및 연결성 제어요소: 고흥지역 백일도단층의 예)

  • Park, Chae-Eun;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.615-627
    • /
    • 2021
  • The Baekildo fault, a dextral strike-slip fault developed in Baekil Island, Goheung-gun, controls the distribution of tuffaceous sandstone and lapilli tuff and shows a complex fracture system around it. In this study, we examined the spatial variation in the geometry and connectivity of the fracture system by using circular sampling and topological analysis based on a detailed fracture trace map. As a result, both intensity and connectivity of the fracture system are higher in tuffaceous sandstone than in lapilli tuff. Furthermore, the degree of the orientation dispersion, intensity, and average length of fracture sets vary depending on the along-strike variation in structural position in the tuffaceous sandstone. Notably, curved fractures abutting the fault at a high angle occur at a fault bend. Based on the detailed observation and analyses of the fracture system, we conclude as follows: (1) the high intensity of the fracture system in the tuffaceous sandstone is caused by the higher content of brittle minerals such as quartz and feldspar. (2) the connectivity of the fracture system gets higher with the increase in the diversity and average length of the fracture sets. Finally, (3) the fault bend with geometric irregularity is interpreted to concentrate and disturb the local stress leading to the curved fractures abutting the fault at a high angle. This contribution will provide important insight into various geologic and structural factors that control the development of fracture systems around faults.

Modified Approaches to Delay Estimation for the Work Zones in the Proximity of the Signalized Intersections (공사구간이 있는 신호교차로의 지체산정을 위한 새로운 접근)

  • Shin, Chi-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.269-281
    • /
    • 2018
  • Unlike its archetype predecessor such as the Highway Capacity Manual of the United States, the Korean Highway Capacity Manual of 2013 provides the analytical models for estimating the saturation flow rates for the lane-occupying work-zones in the proximity of the signalized intersections. Direct application of the revised saturation flow rates into the classic control delay models, however, appears to produce unreasonable delay amount as traffic demand approaches lane-group capacities and surpasses them, which is common phenomena in the work-zones. Complex interaction among vehicles, lane-dropping work-zone geometry and signal operations were never accounted in the traditional control delay models, and considerable differences between the delay model outcomes and field observations are repeatedly experienced. This paper proposes the modified approaches to the delay models in the manual, exerted on all three elements of control delay, and particularly focuses on the temporal and spatial boundary expansion in comparing the simulated results to the estimated ones. Extensive microscopic simulation work and calibration effort supports the modified approaches well enough to use them in the work-zone planning and evaluation.

Scaling up of single fracture using a spectral analysis and computation of its permeability coefficient (스펙트럼 분석을 응용한 단일 균열 규모확장과 투수계수 산정)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.29-46
    • /
    • 2004
  • It is important to identify geometries of fracture that act as a conduit of fluid flow for characterization of ground water flow in fractured rock. Fracture geometries control hydraulic conductivity and stream lines in a rock mass. However, we have difficulties to acquire whole geometric data of fractures in a field scale because of discontinuous distribution of outcrops and impossibility of continuous collecting of subsurface data. Therefore, it is needed to develop a method to describe whole feature of a target fracture geometry. This study suggests a new approach to develop a method to characterize on the whole feature of a target fracture geometry based on the Fourier transform. After sampling of specimens along a target fracture from borehole cores, effective frequencies among roughness components were selected by the Fourier transform on each specimen. Then, the selected effective frequencies were averaged on each frequency. Because the averaged spectrum includes all the frequency profiles of each specimen, it shows the representative components of the fracture roughness of the target fracture. The inverse Fourier transform is conducted to reconstruct an averaged whole roughness feature after low pass filtering. The reconstructed roughness feature also shows the representative roughness of the target subsurface fracture including the geometrical characteristics of each specimen. It also means that overall roughness feature by scaling up of a fracture. In order to identify the characteristics of permeability coefficients along the target fracture, fracture models were constructed based on the reconstructed roughness feature. The computation of permeability coefficient was performed by the homogenization analysis that can calculate accurate permeability coefficients with full consideration of fracture geometry. The results show a range between $10^{-4}{\;}and{\;}10^{-3}{\;}cm/sec$, indicating reasonable values of permeability coefficient along a large fracture. This approach will be effectively applied to the analysis of permeability characteristics along a large fracture as well as identification of the whole feature of a fracture in a field scale.

The Activation Plan of Variable Speed Control of Considering Urban Freeway Continuos Traffic Characteristics (In Busan Metropolitan City) (도시고속도로 연속류의 교통특성을 고려한 가변속도제어 활성화 방안 - 부산광역시를 중심으로 -)

  • Jeong, Yong-Hwa;Choi, Yang-Won;Lim, Chang-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.627-635
    • /
    • 2014
  • Currently the highest speed limit on the road traffic congestion or because you can not cope with climate change to cause a traffic accident may be a factor. According to the Road Traffic Act as well as 20% to 50% in case of inclement weather, but the driver must slow speed left to the judgment of the difficulties, and to slow the vehicle and the relative velocity between the vehicle does not run longer be a big influence on the environment and safety. Thus, variable speed control for drivers on the road, specify the appropriate maximum speed limit in bad weather It keeps motorists slowed the run rate to prevent accidents or reduce the severity of accident damage is expected to be possible. The purpose of this study is the frequent traffic accidents Continuous Busan (City Freeway) around the variable speed control in the appropriate sections so that it can be done by analyzing the characteristics of traffic accidents were the severity of the accident. Highway and urban environment, the geometry of the structure because it has a lot of Curved planar point compared to wet and dry road surfaces by simulated rain wet had bom the more the speed the greater the risk of an accident was the result. Based on these results, the primary section, first urban highway tunnel, near the lamp, near Toll Plaza, near binary Outlet after considering various factors such as speed reduction is needed in the first period by conducting awareness and recognize the need for the participation of the driver and the future city installation and operation of highways in all sectors is expected to be expanded.

Development of an Image Processing Algorithm for Paprika Recognition and Coordinate Information Acquisition using Stereo Vision (스테레오 영상을 이용한 파프리카 인식 및 좌표 정보 획득 영상처리 알고리즘 개발)

  • Hwa, Ji-Ho;Song, Eui-Han;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.210-216
    • /
    • 2015
  • Purpose of this study was a development of an image processing algorithm to recognize paprika and acquire it's 3D coordinates from stereo images to precisely control an end-effector of a paprika auto harvester. First, H and S threshold was set using HSI histogram analyze for extracting ROI(region of interest) from raw paprika cultivation images. Next, fundamental matrix of a stereo camera system was calculated to process matching between extracted ROI of corresponding images. Epipolar lines were acquired using F matrix, and $11{\times}11$ mask was used to compare pixels on the line. Distance between extracted corresponding points were calibrated using 3D coordinates of a calibration board. Non linear regression analyze was used to prove relation between each pixel disparity of corresponding points and depth(Z). Finally, the program could calculate horizontal(X), vertical(Y) directional coordinates using stereo camera's geometry. Horizontal directional coordinate's average error was 5.3mm, vertical was 18.8mm, depth was 5.4mm. Most of the error was occurred at 400~450mm of depth and distorted regions of image.

Relative RPCs Bias-compensation for Satellite Stereo Images Processing (고해상도 입체 위성영상 처리를 위한 무기준점 기반 상호표정)

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • It is prerequisite to generate epipolar resampled images by reducing the y-parallax for accurate and efficient processing of satellite stereo images. Minimizing y-parallax requires the accurate sensor modeling that is carried out with ground control points. However, the approach is not feasible over inaccessible areas where control points cannot be easily acquired. For the case, a relative orientation can be utilized only with conjugate points, but its accuracy for satellite sensor should be studied because the sensor has different geometry compared to well-known frame type cameras. Therefore, we carried out the bias-compensation of RPCs (Rational Polynomial Coefficients) without any ground control points to study its precision and effects on the y-parallax in epipolar resampled images. The conjugate points were generated with stereo image matching with outlier removals. RPCs compensation was performed based on the affine and polynomial models. We analyzed the reprojection error of the compensated RPCs and the y-parallax in the resampled images. Experimental result showed one-pixel level of y-parallax for Kompsat-3 stereo data.