DOI QR코드

DOI QR Code

공사구간이 있는 신호교차로의 지체산정을 위한 새로운 접근

Modified Approaches to Delay Estimation for the Work Zones in the Proximity of the Signalized Intersections

  • 신치현 (경기대학교 도시.교통공학과)
  • 투고 : 2017.11.27
  • 심사 : 2018.01.08
  • 발행 : 2018.04.01

초록

2013년 한국 도로용량편람은 그 원형이나 다름없는 미국 편람과는 달리 특수상황의 하나로 신호교차로 주변에서의 공사구간으로 인한 포화교통류율 변화를 산정하는 방법론과 모형을 특별히 제시하고 있다. 보정된 포화교통류율을 바로 제어지체의 산정모형에 적용한 결과 값들이 실제 빈번하게 발생하는 교통수요가 접근부의 용량에 근접하거나 초과하는 상황에서는 현장의 지체경험과 크게 차이난다는 것이 주지의 사실이 되고 있다. 이는 차량과 공사구간의 형태와 기하구조, 신호운영조건 등이 복잡하게 상호작용하는 것을 기존 제어지체 산정모형이 제대로 반영하지 못하기 때문이라 사료된다. 본 연구는 신호교차로 부근에서 시행되는 공사구간 때문에 야기되는 지체의 변화를 보다 잘 수용하는 제어지체 산정의 수정모형을 제시하고 있다. 도로용량편람의 제어지체를 구성하는 세 가지 지체 요소별로 수정 방법을 제시하고 있으며 현 편람의 지체산출과 시뮬레이션 결과를 비교, 평가하는데 시공간적 범위를 확장해야 하는 초점을 간과하지 않았다. 많은 시행착오를 거친 매개변수의 정산 노력과 많은 수의 미시 모의시험 실행 결과를 종합해 보면 제안하는 수정모형과 방법론이 도시 및 교외 간선도로 상 도로점용 공사구간의 계획과 평가에 하자 없이 활용될 수 있는 가능성을 보여주었다.

Unlike its archetype predecessor such as the Highway Capacity Manual of the United States, the Korean Highway Capacity Manual of 2013 provides the analytical models for estimating the saturation flow rates for the lane-occupying work-zones in the proximity of the signalized intersections. Direct application of the revised saturation flow rates into the classic control delay models, however, appears to produce unreasonable delay amount as traffic demand approaches lane-group capacities and surpasses them, which is common phenomena in the work-zones. Complex interaction among vehicles, lane-dropping work-zone geometry and signal operations were never accounted in the traditional control delay models, and considerable differences between the delay model outcomes and field observations are repeatedly experienced. This paper proposes the modified approaches to the delay models in the manual, exerted on all three elements of control delay, and particularly focuses on the temporal and spatial boundary expansion in comparing the simulated results to the estimated ones. Extensive microscopic simulation work and calibration effort supports the modified approaches well enough to use them in the work-zone planning and evaluation.

키워드

참고문헌

  1. Akcelik, R. (1988). "The highway capacity manual delay formula for signalized intersections." ITE Journal March, Institute of Transportation Engineers, pp. 23-27.
  2. Dion, F., Rakha, H. and Kang, Y. (2004). "Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections." Transportation Research Part B, Vol. 38, pp. 99-122. https://doi.org/10.1016/S0191-2615(03)00003-1
  3. Dowling, R., Skabardonis, A. and Alexiadis, V. (2004). Traffic analysis toolbox volume III : Guidelines for applying traffic microsimulation modeling software, Report FHWA-HRT-04-040, Federal Highway Administration, Washington D.C.
  4. Elefteriadou, L., Jain, M. and Heaslip, K. (2008). Impact of lane closures on roadway capacity : Part B - Arterial work zone capacity, FDOT Contract BD-545, RPWO #61, The Univ. of Florida.
  5. Eo, H. and Shin, C. (2010). "Development of SFR estimation models considering work-zones in the vicinity of signalized intersections." Journal Korean Soc. Transp., Korean Society of Transportation, Vol. 28, No. 6, pp. 109-120 (in Korean).
  6. Hajbabaie, A., Kim, S., Schroeder, B., Aghadashi, S., Rouphail, N. and Tabrizi, K. (2017). "Saturation headway estimation on urban street work zone." TRR 2615, Transportation Research Board Washington D.C., pp. 26-34.
  7. Holm, P., Tomich, D., Sloboden, J. and Lawrance, C. (2007). Traffic analysis toolbox volume IV : Guidelines for applying CORSIM microsimulation modeling software, Report FHWA-HOP-07- 079, FHWA, Washington D.C., pp. 130-137.
  8. ITT Industries, Inc. (2006). CORSIM User's Guide ver. 6.0, Prepared for Federal Highway Administration under contract number; DTFH61-01-C-0005, Washington D.C.
  9. Joseph, T., Radwan, E. and Rouphail, N. (1988). "Work zone analysis model for the signalized arterial." TRR 1194, Transportation Research Board Washington D.C., pp. 112-119.
  10. Jung, H. and Lee, C. (2006). "Capacity drop due to various incidents on freeways." Proc. of 53rd Conf. of Korean Soc. Transp., Korean Society of Transportation, pp. 401-410 (in Korean).
  11. Kim, D. and Lee, S. (1998). "Traffic characteristics on lane drop areas around highway work zones." Journal Korean Soc. Civil Eng., KSCE, Vol. 18, No. III-4, pp. 445-462 (in Korean).
  12. Kim, T., Lovell, D. and Paracha, J. (2001). A new methodology to estimate capacity for freeway work zones, TRB Annual Meeting.
  13. Ko, J. (2005). The study on permission and management system improvement of traffic control system on road works, Master Thesis, Graduate School of Urban Science, University of Seoul (in Korean).
  14. Krammes, R. A. and Lopez, G. O. (1994). "Updated capacity values for short-term freeway work zone lane closures." TRR 1442, Transportation Research Board Washington D.C.
  15. KST (2012). Highway capacities under special situations including roundabouts, work-zones and inclement weather conditions: Final draft report, Korea Society of Transportation (in Korean).
  16. Ministry of Land, Infrastructure and Transport (MOLIT) (2013). Highway capacity manual of 2013, Ministry of Land, Infrastructure and Transportation of R.O.K. (in Korean).
  17. Oh, J. and Ko, D. (1998). "Analysis of traffic flow on the lane closure due to road construction." Proc. of 34th Conf. of Korean Soc. Transp., Korean Society of Transportation, pp. 116-125 (in Korean).
  18. Praveen, K. E. (2007). Estimation of traffic mobility impacts at work zones : State of the practice, TRB Annual Meeting.
  19. Rahim, F. B. et al. (2003). Evaluation of construction work zone operational issue : Capacity, queue, and delay, project IVA-H1, report no. ITRC FR 00/01-4 Illinois Transportation Research Center.
  20. Roess, R., Prassas, E. and McShane, W. (2013). Traffic engineering : Fourth edition, Pearson, Upper Saddle River, NJ.
  21. Seoul Metropolitan Government (2014). Seoul street works process guide, Seoul Metropolitan Government, Available at: http://safe. seoul.go.kr/ (Accessed: July 7, 2017).
  22. Shin, C. (2013). "Capacity estimation models for work-zones under traffic signal influence and the empirical validation." Journal Korean Soc. Transp., Korean Society of Transportation, Vol. 31, No. 1, pp. 77-86 (in Korean). https://doi.org/10.7470/jkst.2013.31.1.077
  23. Shin, C. et al. (2012). Development of traffic flow characteristics models and making of traffic management plan evaluation tools: Project report phase II, Korea Society of Transportation (in Korean).
  24. Traffic Operation Division (2017). Internally prepared statistics for traffic impact deliberation committee on road occupying work zones of 2014-2016 in the streets of Seoul, Seoul Metropolitan City (in Korean).
  25. TRB (2000). Highway capacity manual 2000, National Research Council, TRB Washington D.C.
  26. TRB (2010). Highway capacity manual 2010, National Research Council, TRB Washington D.C.
  27. Zhang, L., Holm, P. and Colyar, J. (2004). Identifying and assessing key weather-related parameters and their impacts on traffic operation using simulation, Federal Highway Administration, Pub. No. FHWA-HRT-04-131, Washington D.C.