Browse > Article
http://dx.doi.org/10.9719/EEG.2021.54.6.615

Controlling Factors on the Development and Connectivity of Fracture Network: An Example from the Baekildo Fault in the Goheung Area  

Park, Chae-Eun (Department of Geology, Kyungpook National University)
Park, Seung-Ik (Department of Geology, Kyungpook National University)
Publication Information
Economic and Environmental Geology / v.54, no.6, 2021 , pp. 615-627 More about this Journal
Abstract
The Baekildo fault, a dextral strike-slip fault developed in Baekil Island, Goheung-gun, controls the distribution of tuffaceous sandstone and lapilli tuff and shows a complex fracture system around it. In this study, we examined the spatial variation in the geometry and connectivity of the fracture system by using circular sampling and topological analysis based on a detailed fracture trace map. As a result, both intensity and connectivity of the fracture system are higher in tuffaceous sandstone than in lapilli tuff. Furthermore, the degree of the orientation dispersion, intensity, and average length of fracture sets vary depending on the along-strike variation in structural position in the tuffaceous sandstone. Notably, curved fractures abutting the fault at a high angle occur at a fault bend. Based on the detailed observation and analyses of the fracture system, we conclude as follows: (1) the high intensity of the fracture system in the tuffaceous sandstone is caused by the higher content of brittle minerals such as quartz and feldspar. (2) the connectivity of the fracture system gets higher with the increase in the diversity and average length of the fracture sets. Finally, (3) the fault bend with geometric irregularity is interpreted to concentrate and disturb the local stress leading to the curved fractures abutting the fault at a high angle. This contribution will provide important insight into various geologic and structural factors that control the development of fracture systems around faults.
Keywords
fracture system; geometry; topology; connectivity; controlling factors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fossen, H. (2016) Structural Geology, second edition. Cambridge University Press, Cambridge, 510p.
2 Friedman, M. (1975) Fracture in rock. Rev. Geophys., v.13, p.352-358. doi: 10.1029/RG013i003p00352   DOI
3 Guerriero, V., Mazzoli, S., Iannace, A., Vitale, S., Carravetta, A. and Strauss, C. (2013) A permeability model for naturally fractured carbonate reservoirs. Mar. Petrol. Geol., v.40, p.115-134. doi: 10.1016/j.marpetgeo.2012.11.002   DOI
4 Hancock, P.L. (1985) Brittle microtectonics: principles and practice. J. Struct. Geol., v.7, p.437-457. doi: 10.1016/0191-8141(85)90048-3   DOI
5 Hanks, C.L., Lorenz, J., Teufel, L., and Krumhardt, A. P. (1997) Lithologic and structural controls on natural fracture distribution and behavior within the Lisburne Group, northeastern Brooks Range and North Slope subsurface, Alaska. AAPG bull., v.81, p.1700-1720. doi: 10.1306/3B05C424-172A-11D7-8645000102C1865D   DOI
6 Choi, H.I. (1986) Sedimentation and evolution of the Cretaceous Gyeongsang Basin, southeastern Korea. J. Geol. Soc., v.143, p.29-40. doi: 10.1144/gsjgs.143.1.0029   DOI
7 Choi, P.Y., Lee, S.R., Choi, H.I., Hwang, J.H., Kwon, S.K., Ko, I.S. and An, K.O. (2002) Movement history of the Andong Fault System: Geometric and tectonic approaches. Geosci. J., v.6, p.91-102. doi: 10.1007/BF03028280   DOI
8 Zarei, H.R., Uromeihy, A. and Sharifzadeh, M. (2012) Identifying geological hazards related to tunneling in carbonate karstic rocks - Zagros, Iran. Arabian J. Geosci., v.5, p.457-464. doi: 10.1007/s12517-010-0218-y   DOI
9 Hugman, R.H.H. and Friedman, M. (1979) Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks. AAPG Bull., v.63, p.1478-1489. doi: 10.1306/2F9185C7-16CE-11D7-8645000102C1865D   DOI
10 Kim, Y.-S. and Park, J.-Y. (2006) Cenozoic deformation history of the area aroung Yangnam-Yangbuk, SE Korea and its tectonic significance. J. Asian Earth Sci., v.26, p.1-20. doi: 10.1016/j.jseaes.2004.08.00   DOI
11 Larsen, B. and Gudmundsson, A. (2010) Linking of fractures in layered rocks: implications for permeability. Tectonophysics, v.492, p.108-120. doi: 10.1016/j.tecto.2010.05.022   DOI
12 Long, J.C.S. and Witherspoon, P.A. (1985) The relationship of interconnection to permeability in fracture networks. J. Geophys. Res., v.90, p.3087-3098. doi: 10.1029/JB090iB04p03087   DOI
13 Manzocchi, T. (2002) The connectivity of two dimensional networks of spatially correlated fractures. Water Resour. Res., v.38, p.1162-1181. doi: 10.1029/2000WR000180   DOI
14 Chang, K.H. (1975) Cretaceous stratigraphy of southeast Korea. J. Geol. Soc. Korea, v.11, p.1-23.
15 Balberg, I., Berkowitz, B. and Drachsler, G.E. (1991) Application of a percolation model to flow in fractured hard rocks. J. Geophy. Res., v.96, p.10015-10021. doi: 10.1029/91JB00681   DOI
16 Cartwright, J.A., Trudgill, B.D. and Mansfield, C.S. (1995) Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. J. Struct. Geol., v.17, p.1319-1326. doi: 10.1016/0191-8141(95)00033-A   DOI
17 Chang, C.J. and Chang, T.W. (1998) Movement history of the Yangsan Fault based on paleostress analysis. J. Eng. Geol., v.8, p.35-49 (in Korean with English abstract).   DOI
18 Palmstrom, A. (1996) Characterizing rock masses by the RMi for use in practical rock engineering: Part 1: the development of the Rock Mass index (RMi). Tunn. Undergr. Space Technol., v.11, p.175-188. doi: 10.1016/0886-7798(96)00015-6   DOI
19 March, R., Doster, F. and Geiger, S. (2018) Assessment of CO2 storage potential in naturally fractured reservoirs with dualporosity models. Water Resour. Res., v.54, p.1650-1668. doi: 10.1002/2017WR022159   DOI
20 Odling, N.E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J.P., Christensen N.P., Fillion, E., Genter, A., Olsen, C., Thrane, L., Trice, R., Aarseth, E., Walsh, J.J. and Watterson, J. (1999) Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs. Pet. Geosci., v.5, p.373-384. doi: 10.1144/petgeo.5.4.373   DOI
21 Perez-Flores, P., Veloso, E., Cembrano, J., Sanchez-Alfaro, P., Lizama, M. and Arancibia, G. (2017) Fracture network, fluid pathways and paleostress at the Tolhuaca geothermal field. J. Struct Geol., v.96, p.134-148. doi: 10.1016/j.jsg.2017.01.009   DOI
22 Petit, J.P., Auzias, V., Rawnsley, K. and Rives, T. (2000) Development of joint sets in association with faults. In: Lehner, F.K., Urai, J.L. (eds.) Aspect of Tectonic Faulting. Springer-Verlag, Berlin, p.167-184. doi: 10.1007/978-3-642-59617-9_9   DOI
23 Rotevatn, A. and Bastesen, E. (2014) Fault linkage and damage zone architecture in tight carbonate rocks in the Suez Rift (Egypt): implications for permeability structure along segmented normal faults. Geol. Soc. Lon., v.374, p.79-95. doi: 10.1144/SP374.12   DOI
24 Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Sci. Rev., v.101, p.225-249. doi: 10.1016/j.earscirev.2010.05.004   DOI
25 Ortega, O. and Marrett, R. (2000) Prediction of macrofracture properties using microfracture information, Mesaverde Group sandstones, San Juan basin, New Mexico. J. Struct. Geol., v.22, p.571-588. doi: 10.1016/S0191-8141(99)00186-8   DOI
26 Priest, S.D. and Hudson, J.A. (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v.18, p.183-197. doi: 10.1016/0148-9062(81)90973-6   DOI
27 Priest, S.D. (1993) Discontinuity analysis for rock engineering. Chapman and Hall, New York, 473p.
28 Rawnsley, K.D., Rives, T. and Petit J.P. (1992) Joint development in perturbed stress fields near faults. J. Struct. Geol., v.14, p.939-951. doi: 10.1016/0191-8141(92)90025-R   DOI
29 Adler, P.M. and Thovert, J.F. (1999) Fractures and fracture networks. Kluwer Academic Publishers, Dordrecht, 431p.
30 Barbier, M., Hamon, Y., Callot, J.P., Floquet, M., and Daniel, J.M. (2012) Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Mar. Petrol. Geol., v.29, p.50-67. doi: 10.1016/j.marpetgeo.2011.08.009   DOI
31 LaPointe, P.R. and Hudson, J.A. (1985) Characterization and interpretation of rock mass joint patterns. Spec. Pap. Geol. Soc. Am., v.199, p.1-37. doi: 10.1130/SPE199-p1   DOI
32 Bisdom, K., Gauthier, B.D.M., Bertotti, G. and Hardebol, N.J. (2014) Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: implications for naturally fractured reservoir modeling. AAPG Bull., v.98, p.1351-1376. doi: 10.1306/02031413060   DOI
33 Chang, K.H., Suzukib, K., Park, S.-O., Ishida, K. and Uno, K. (2003) Recent advances in the Cretaceous stratigraphy of Korea. J. Asian Earth Sci., v.21, p.937-948. doi: 10.1016/S1367-9120(02)00142-6   DOI
34 Choi, P.Y., Choi, H.I., Hwang, J.H., Kee, W.S., Ko, H.J., Kim, Y.B., Lee, B.J., Song, K.Y., Kim, J.C. and Choi, Y.S. (2002) Explanatory note of the Mokpo and Yeosu sheets (1:250,000). Korean Institute Geoscience and material Resources, 45p (in Korean with English abstract).
35 Mansfield, C.S. and Cartwright, J.A. (1996) High resolution fault displacement mapping from three-dimensional seismic data: evidence for dip linkage during fault growth. J. Struct. Geol., v.18, p.249-263. doi: 10.1016/S0191-8141(96)80048-4   DOI
36 Marrett, R.A., Ortega, O.J. and Kelsey, C. (1999) Extent of power-law scaling for natural fractures in rock. Geol., v.27, p.799-802. doi: 10.1130/0091-7613(1999)027%3C0799:EOPLSF%3E2.3.CO;2   DOI
37 Odling, N.E. and Larsen, O. (2000) Vein architectur e in the Devonian sandstones of the Hornelen basin, western Norway, and implications for the palaeostrain history. Norske Geol. Tids., v.80, p.289-299. doi: 10.1080/00291960051030626   DOI
38 Olson, J.E., Laubach, S.E. and Lander, R.H. (2009) Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis. AAPG Bull., v.93, p.1535-1549. doi: 10.1306/08110909100   DOI
39 Evans, M.A. and Battles, D.A. (1999) Fluid inclusion and stable isotope analyses of veins from the central Appalachian Valley and Ridge province: implications for regional synorogenic hydrologic structure and fluid migration. Geol. Soc. Am. Bull., v.111, p.1841-1860. doi: 10.1130/0016-7606(1999)111%3C1841:FIASIA%3E2.3.CO;2   DOI
40 Corbett, K., Friedman, M. and Spang, J. (1987) Fracture development and mechanical stratigraphy of Austin Chalk, Texas. AAPG Bull., v.71, p.17-28. doi: 10.1306/94886D35-1704-11D7-8645000102C1865D   DOI
41 Peacock, D.C.P. and Sanderson, D.J. (1994) Geometry and development of relay ramps in normal fault systems. AAPG Bull., v.78, p.147-165. doi: 10.1306/BDFF9046-1718-11D7-8645000102C1865D   DOI
42 Ortega, O.J., Marrett, R.A. and Laubach, S.E. (2006) A scaleindependent approach to fracture intensity and average spacing measurement. AAPG Bull., v.90, p.193-208. doi: 10.1306/08250505059   DOI
43 Balberg, I. and Binenbaum, N. (1983) Computer study of the percolation threshold in a two-dimension anisopropic system of conducting sticks. Phys. Rev., v.28, p.3799-3812. doi: 10.1103/PhysRevB.28.3799   DOI
44 Mauldon, M., Dunne, W.M. and Rohrbaugh, M.B. (2001) Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. J. Struct. Geol., v.23, p.247-258. doi: 10.1016/S0191-8141(00)00094-8   DOI
45 Sanderson D.J. and Nixon C.W. (2015) The use of topology in fracture network characterization. J. Struct. Geol., v.72, p.55-66. doi: 10.1016/j.jsg.2015.01.005   DOI
46 Sinclair, S.W. (1980) Analysis of Macroscopic Fractures on Teton Anticline, Northwestern Montana. Thesis, Texas A&M University, Texas, 102p.
47 Walsh, J., Bailey, W., Childs, C., Nicol, A. and Bonson, C. (2003) Formation of segmented normal faults: a 3-D perspective. J. Struct. Geol., v.25, p.1251-1262. doi: 10.1016/S0191-8141(02)00161-X   DOI
48 Wennberg, O.P., Azizzadeh, M., Aqrawi, M.M., Blanc, E., Brockbank, P., Lyslo, K.B., Pickard, N., Salem, L.D. and Svana, T. (2007) The Khaviz Anticline: an outcrop analogue to giant fractured Asmari Formation reservoirs in SW Iran. In: Lonergan, L., Jolly, R.J.H., Rawnsley, K. and Sanderson, D.J. (eds.) Fractured Reservoirs. Geol. Soc. Lon. Spec. Publ., v.270, p.23-42. doi: 10.1144/GSL.SP.2007.270.01.02   DOI
49 Pahl, P.J. (1981) Estimating the mean length of discontinuity traces. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v.18, p.221-228. doi: 10.1016/0148-9062(81)90976-1   DOI
50 Peacock, D.C.P. and Sanderson, D.J. (1991) Displacements, segment linkage and relay ramps in normal fault zones. J. Struct. Geol., v.13, p.721-733. doi: 10.1016/0191-8141(91)90033-F   DOI
51 Sanderson D.J. and Nixon C.W. (2018) Topology, connectivity and percolation in fracture networks. J. Struct. Geol., v.115, p.167-177. doi: 10.1016/j.jsg.2018.07.011   DOI
52 Sarkheil, H., Hassani, H. and Alinia, F. (2013) Fractures distribution modeling using fractal and multi-fractal-neural network analysis in Tabnak hydrocarbon field, Fars, Iran. Arabian J. Geosci., v.6, p.945-956. doi: 10.1007/s12517-011-0400-x   DOI
53 Segall, P. and Pollard, D.D. (1980) Mechanics of discontinuous faults. J. Geophys. Res., v.85, p.4337-4350. doi: 10.1029/JB085iB08p04337   DOI
54 Tamagawa, T. and Pollard, D.D. (2008) Fracture permeability created by perturbed stress fields around active faults in a fractured basement reservoir. AAPG Bull., v.92, p.743-764. doi: 10.1306/02050807013   DOI
55 Tavarnelli, E. and Pasqui, V. (2000) Fault growth by segment linkage in seismically active settings: examples from the Southern Apennines, Italy, and the Coast Ranges, California. J. Geodyn., v.29, p.501-516. doi: 10.1016/S0264-3707(99)00041-1   DOI
56 Watkins, H., Bond, C.E., Healy, D. and Butler, R.W.H. (2015) Appraisal of fracture sampling methods and a new workflow to characterize heterogeneous fracture networks at outcrop. J. Struct. Geol., v.72, p.67-82. doi: 10.1016/j.jsg.2015.02.001   DOI
57 Odling, N.E. (1997) Scaling and connectivity of joint systems in sandstones from western Norway. J. Struct. Geol., v.19, p.1257-1271. doi: 10.1016/S0191-8141(97)00041-2   DOI
58 Ferrill, D.A. and Morris, A.P. (2008) Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. AAPG Bull., v.92, p.359-380. doi: 10.1306/10290707066   DOI
59 Nelson, R.A. (2001) Geologic Analysis of Naturally Fractured Reservoirs, second edition. Gulf Professional Publishing, Boston, 332p.
60 Rohrbaugh, M.B., Dunne, W.M. and Mauldon, M. (2002) Estimating fracture trace intensity, density, and mean length using circular scan lines and windows. AAPG Bull., v.86, p.2087-2102. doi: 10.1306/61EEDE0E-173E-11D7-8645000102C1865D   DOI
61 Fitz-Diaz, E., Hudleston, P., Siebenaller, L., Kirschner, D., Camprubl, A., Tolson, G. and Puig, T.P. (2011) Insights intofluidflow and water-rock interaction during deformationof carbonate sequences in the Mexican fold-thrus. J. Struct. Geol., v.33, p.1237-1253. doi: 10.1016/j.jsg.2011.05.009   DOI
62 Cheon, Y., Ha, S., Lee, S. and Son, M. (2020) Tectonic evolution of the Cretaceous Gyeongsang Back-arc Basin, SE Korea: Transition from sinistral transtension to strike-slip kinematics. Gondwana Res., v.83, p.16-35. doi: 10.1016/j.gr.2020.01.012   DOI
63 Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A. and Schopfer, M.P.J. (2009) A geometric model of fault zone and fault rock thickness variations. J. Struct. Geol., v.31, p.117-127. doi: 10.1016/j.jsg.2008.08.009   DOI
64 Watkins, H., Bond, C.E., Cawood, A.J., Cooper, M.A. and Warren, M.J. (2019) Fracture distribution on the Swift Reservoir Anticline, Montana: implications for structural and lithological controls on fracture intensity. In: Bond, C.E. and Lebit, H.D. (eds.) Folding and Fracturing of Rocks: 50 Years of Research since the Seminal Text Book of J. G. Ramsay. Geol. Soc. Lon. Spec. Publ., v.487, p.209-228. doi: 10.1144/SP487.9   DOI