• Title/Summary/Keyword: geological distribution

Search Result 474, Processing Time 0.026 seconds

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Analysis of Slope Stability by Using Remote Sensing and GIS in Ichon Basin (원격탐사와 지구정보시스템 (GIS)을 이용한 이천분지의 사면안정평가)

  • Won, Jong Suck;Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.241-248
    • /
    • 1997
  • In this study, Ichon basin is selected as study area and regional analysis of geological structure are done by using lineament analysis. The factors which affects slope stability, are chosen, and integrated to database using GIS (Geoscientific Information System). Landsat TM band 4, 5 and 7 are choosen and processed by various image enhancement technique to analyse the regional geological lineaments. Spatial distribution of lineament is analysed through lineament density map and study area can be divided the eight structural domains. Considering environmental geological characteristics of study area, rating and weighting of each factors for slope stability analysis are determined and spatial analysis of regional slope stability is examined through overlaying technique of GIS. The result of areal distribution of slope stability shows that the most unstable area is all over Mt. Buksung, Mt. Daepo, Mt. Songrim and Mt. Yankak.

  • PDF

A Geological and Geomorphological Study on Jeomal Cave (점말동굴 지역의 지형과 지질)

  • Kim, Joo-Whan
    • Journal of the Speleological Society of Korea
    • /
    • no.67
    • /
    • pp.21-34
    • /
    • 2005
  • Jeomal Cave consists of limestone. Soil distribution is very different from mountain area to piedmont area. The Cave developed in a part of the fault valley. The joints controls the low level stream orders in the cave. in this area the geological structure is close relate to the underground water flow. It is certain that the distribution of the clay came from the surface.

The Development of Technique for the Visualization of Geological Information Using Geostatistics (지구통계학을 활용한 지반정보 가시화 기법 개발)

  • 송명규;김진하;황제돈;김승렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.501-508
    • /
    • 2001
  • A graph or topographic map can often convey larger amounts of information in a shorter time than ordinary text-based methods. To visualize information precisely it is necessary to collect all the geological information at design stage, but actually it is almost impossible to bore or explore the entire area to gather the required data. So, tunnel engineers have to rely on the judgement of expert from the limited number of the results of exploration and experiment. In this study, several programs are developed to handle the results of geological investigation with various data processing techniques. The results of the typical case study are also presented. For the electric survey, eleven points are chosen at the valley to measure the resistivity using Schlumberger array. The measured data are interpolated in 3-dimensional space by kriging and the distribution of resistivity are visualized to find weak or fractured zone. The correlation length appears to be around 5 to 20 meter in depth. Regression analyses were performed to find a correlation length. No nugget effect is assumed, and the topographic map, geologic formation, fault zone, joint geometry and the distribution of resistivity are successfully visualized by using the proposed technique.

  • PDF

The Research for Relationships between Concentration of Indoor Radon and Distribution of Soil Geological Map using GIS : Based on the Hwacheon and Jangsu Areas (지리정보시스템(GIS)을 이용한 토양지질도 분포와 실내라돈 상관성 연구 : 화천 및 장수의 사례를 근거로)

  • Kwon, Myunghee;Lee, Jaewon;Kim, Seongmi;Lee, Jungsub;Jung, Joonsig;Yoo, Juhee;Lee, Kyusun;Song, Suckhwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.333-351
    • /
    • 2017
  • Objectives: This study examines the relationships between indoor radon concentrations and distribution from soil geological mapping in the Hwacheon and Jangsu areas. Methods: GIS and a pivot table were used for inquiries about indoor radon contents, soil characteristics, and geological differences. Results: The Hwacheon area was characterized by the presence of normal and reverse faults as a passage of runoff for radon, sufficient occurrences of minerals containing uranium within granite as a radon source, a high concentration of radon within the granite area and clear differences of radon concentrations between granitic and metamorphic areas. The Jangsu area was characterized by the presence of normal faults, wide distributions of alluvium, and ambiguities on radon concentrations indoors among areas of geological differences. Considering the granite area and alluvium surrounded with granite areas, the characteristics of radon concentrations within soils and indoors in the Jangsu area are similar to those of the Hwacheon area. High concentrations are found with entisol and inceptisol in the Hawcheon area, but with entisol, inceptisol, and ultisol in the Jangsu area. High radon concentrations are found in sandy loam and/or loam. High concentrations are found in recently constructed or brick buildings, but low concentrations in traditional or prefabricated houses showing a high possibility of outward flow. Conclusions: The overall results suggest that radon concentrations in the Hwacheon and Jangsu area are dominantly influenced by geological characteristics with additional artificial influences.

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

Analysis of Reservoir Vulnerability Based on Geological Structure Around Pohang Earthquake (포항지진 발생 주변지역 지질특성에 따른 저수지 취약성 해석)

  • Lim, Sung Keun;Song, Sung-Ho;Yu, Jaehyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2018
  • A total of 594 reservoirs (17%), which are managed by KRC, equipped with earthquake-resistant facilities whereas remaining ones did not. In addition, reservoirs were placed without the effect of geological structures (i.e., fault and lineament). Therefore, development on technique for alleviating the potential hazards by natural disasters along faults and lineaments has required. In addition, an effective reinforcement guideline related to the geological vulnerabilities around reservoirs has required. The final goal of this study is to suggest the effective maintenance for the safety of earth fill dams. A radius 2 km, based on the center of the reservoir in the study area was set as the range of vulnerability impacts of each reservoir. Seismic design, precise safety diagnosis, seismic influence and geological structure were analyzed for the influence range of each reservoir. To classify the vulnerability of geological disasters according to the fault distribution around the reservoir, evaluation index of seismic performance, precise safety diagnosis, seismic influence and geological structure were also developed for each reservoir, which were a component of the vulnerability assessment of geological disasters. As a result, the reservoir with the highest vulnerability to geological disasters in the pilot district was analyzed as Kidong reservoir with an evaluation index of 0.364. Within the radius of 100km from the epicenter of the Pohang earthquake, the number of agricultural infrastructure facilities subject to urgent inspections were 1,180 including reservoirs, pumping stations and intakes. Four reservoirs were directly damaged by earthquake among 724 agricultural reservoirs. As a result of the precise inspection and electrical resistivity survey of the reservoir after the earthquake, it was reported that cracks on the crest of reservoirs were not a cause of concern. However, we are constantly monitoring the safety of agricultural facilities by Pohang aftershocks.

Resistivity Protecting analysis due to test survey result (시험탐사 결과에 따른 전기비저항 탐사 분석)

  • Kim, Jae-Hong;Hong, Won-Pho;Park, Chul-Sook;Im, En-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1285-1289
    • /
    • 2008
  • Increasing the flood control capacity's link that is enforcing to existing dam by unusual change of weather, While build planing construction by exiting spillway of tunnel type to dam, could know that part bed rock is formed as is different with design. Grasped topography of research area and geology state to definite distribution aspect of different bed rock, Place that achieved Surface geological Survey and correct Survey is difficult in some section enforced Electrical resistivity dipole-dipole investigation. Grasped stratigraphy distribution confirmation and fracture or weathering zone making out siding 2D-Resistivity Electrical resistivity diagram and Reverse analysis diagram, examining closely soil weathered rock rock's distribution state, established stability countermeasure plan

  • PDF

Suggestion for Determination of DCM Design Parameter Based on the Statistical Method (통계적 방법을 이용한 DCM설계정수 결정을 위한 제안)

  • Jeong, Gyeong-Hwan;Shin, Min-Shik;Han, Gyeong-Tae;Lee, Jung-Hwa;Kim, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.462-471
    • /
    • 2008
  • The quality control for DCM is based on the unconfined compressive strength of laboratory treated soils, the cement contents, setting and checking the strength of in-situ treated soils. Also the strength of in-situ is checked mainly by the core boring. In case of large size construction, it might be considered the distribution of DCM strength data as normal distribution, so it might be employed a statistical method to evaluate DCM strength easily. In Japan, it has been established correlation between the strength of laboratory treated soils, the strength of in-suit treated soil and the design strength. Also It has been employed domestically the correlation suggested by Japan. But the correlation, so called $\lambda$(ratio in the strength of laboratory treated soils and the in-suit) and $\gamma$(ratio in the strength of in-suit and the design strength), might be far different with the domestic due to different DCM system and soil properties. so it might be restrictive to use domestically. Therefore in this paper, It is presented correlation between the strength of laboratory treated soils and in-suit treated soil to be employed domestically by evaluating $\lambda$ based on the domestic in-suit illustrations.

  • PDF

Deriving geological contact geometry from potential field data (포텐셜 필드 자료를 이용한 지짙학적 경계 구조 해석)

  • Ugalde, Hernan;Morris, William A.
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2010
  • The building process of any geological map involves linking sparse lithological outcrop information with equally sparse geometrical measurements, all in a single entity which is the preferred interpretation of the field geologist. The actual veracity of this interpretative map is partially dependent upon the frequency and distribution of geological outcrops compounded by the complexity of the local geology. Geophysics is commonly used as a tool to augment the distribution of data points, however it normally does not have sufficient geometrical constraints due to: a) all geophysical inversion models being inherently non-unique; and b) the lack of knowledge of the physical property contrasts associated with specific lithologies. This contribution proposes the combined use of geophysical edge detection routines and 'three point' solutions from topographic data as a possible approach to obtaining geological contact geometry information (strike and dip), which can be used in the construction of a preliminary geological model. This derived geological information should first be assessed for its compatibility with the scale of the problem, and any directly observed geological data. Once verified it can be used to help constrain the preferred geological map interpretation being developed by the field geologist. The method models the contacts as planar surfaces. Therefore, it must be ensured that this assumption fits the scale and geometry of the problem. Two examples are shown from folded sequences at the Bathurst Mining Camp, New Brunswick, Canada.