Deriving geological contact geometry from potential field data

포텐셜 필드 자료를 이용한 지짙학적 경계 구조 해석

  • Ugalde, Hernan (MAGGIC, School of Geography and Earth Sciences, McMaster University) ;
  • Morris, William A. (MAGGIC, School of Geography and Earth Sciences, McMaster University)
  • Received : 2009.07.16
  • Accepted : 2009.12.14
  • Published : 2010.02.18

Abstract

The building process of any geological map involves linking sparse lithological outcrop information with equally sparse geometrical measurements, all in a single entity which is the preferred interpretation of the field geologist. The actual veracity of this interpretative map is partially dependent upon the frequency and distribution of geological outcrops compounded by the complexity of the local geology. Geophysics is commonly used as a tool to augment the distribution of data points, however it normally does not have sufficient geometrical constraints due to: a) all geophysical inversion models being inherently non-unique; and b) the lack of knowledge of the physical property contrasts associated with specific lithologies. This contribution proposes the combined use of geophysical edge detection routines and 'three point' solutions from topographic data as a possible approach to obtaining geological contact geometry information (strike and dip), which can be used in the construction of a preliminary geological model. This derived geological information should first be assessed for its compatibility with the scale of the problem, and any directly observed geological data. Once verified it can be used to help constrain the preferred geological map interpretation being developed by the field geologist. The method models the contacts as planar surfaces. Therefore, it must be ensured that this assumption fits the scale and geometry of the problem. Two examples are shown from folded sequences at the Bathurst Mining Camp, New Brunswick, Canada.

연결성이 좋지 않은 노두, 주향 경사 등의 지질 구조선을 연결하여 지질도를 작성하는 과정은 지질학자의 주관적인 견해를 배제하기 어렵다. 따라서 이러한 지질도는 좁은 지역들에서 나타나는 노두의 복잡한 공간적 분포를 이용하여 해석하게 된다. 또한, 물리탐사 자료를 이용하여 부족한 지질구조 정보를 보완하는 연구들이 수행되고 있으나, 물리탐사 자체가 가지는 역산해의 비유일성 및 각 지질 구조간의 물성 차이에 대한 불확실성으로 인하여 많은 제한점을 갖고 있다. 이번 연구에서 제안하는 방법은 예비 지질 모델 구현에 이용될 수 있는 물리탐사 자료 해석을 통해 획득된 구조 경계 정보와 지형학 자료의 삼점 해석 결과를 이용하여 주향 경사와 같은 지질 구조 정보를 제공할 수 있다. 이를 통하여 추정된 지질 정보들이 지질 조사를 통해 획득된 정보와 결합되기 위해서는 공간 규모 측면에서의 호환 가능성이 검증되어야 하며, 검증된 자료들은 평면상의 자료로 구성되어 지질학자들이 지질도를 작성하는 과정의 초기 자료로 이용되어진다. 따라서 해석된 지질도는 추정된 지질 정보와 공간적 구조적으로 부합되어져야 한다. 이 연구에서 개발된 알고리즘은 캐나다 뉴브런즈윅주 배서스트 광산 부근 두 지역의 습곡구조에 적용하여 해석하였다.

Keywords

References

  1. Barbosa, V. C. F., and Silva, J. B. C., 2006, Interactive 2Dmagnetic inversion: A tool for aiding forward modeling and testing geological hypotheses: Geophysics, 71, L43–L50. doi:10.1190/1.2258093
  2. Calcagno, P., Courrioux, G., Guillen, A., Fitzgerald, D. J., and McInerney, P., 2006, How 3D implicit geometric modelling helps to understand geology: The 3D-geomodeller methodology: XIth International Congress, Society for Mathematical Geology.
  3. Geological Survey of Canada, 1996, Release of Airborne Geophysical Survey Data: Bathurst, New Brunswick. Open File 1394, 1394.
  4. Galley, A. G., Hannington, M. D., and Jonasson, I. R., 2007, Volcanogenic massive sulphide deposits. In W. D. Goodfellow (ed.). Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, 141–161.
  5. Holden, E.-J., Dentith, M., and Kovesi, P., 2008, Towards the automated analysis of regional aeromagnetic data to identify regions prospective for gold deposits: Computers & Geosciences, 34, 1505–1513. doi:10.1016/j.cageo.2007.08.007
  6. Hornby, P., Boschetti, F., and Horowitz, F. G., 1999, Analysis of potential field data in the wavelet domain: Geophysical Journal International, 137, 175–196. doi:10.1046/j.1365-246x.1999.00788.x
  7. Keating, P., Thomas, M., and Kiss, F., 2003, Significance of a highresolution magnetic and electromagnetic survey for exploration and geologic investigations. Bathurst mining camp: Economic Geology Monographs, 11, 783–798.
  8. Li, Y., and Oldenburg, D. W., 1996, 3-D Inversion of magnetic data: Geophysics, 61, 394–408. doi:10.1190/1.1443968
  9. Musgrave, R. J., Grewar, J., and Vega, M., 2006, Significance of remanence in stawell goldfield aeromagnetic anomalies: Australian Journal of Earth Sciences, 53, 783–797. doi:10.1080/08120090600827454
  10. Paterson, N. R., and Reeves, C. V., 1985, Applications of gravity and magnetic surveys: The state-of-the-art in 1985: Geophysics, 50, 2558–2594. doi:10.1190/1.1441884
  11. Pilkington, M., and Keating, P., 2004, Contact mapping from gridded magnetic data-A comparison: ASEG, 17th Geophysical Conference and Exhibition.
  12. Silverman, B., 1986, Density Estimation for Statistics and Data Analysis: Chapman & Hall.
  13. van Staal, C. R., Wilson, R. A., Rogers, N. A., Fyffe, L., Langton, J. P., McCutcheon, S. R., McNicoll, V., and Ravenurst, C. E., 2003, Geology and tectonic history of the bathurst supergroup, Bathurst mining camp, and its relationships to coeval rocks in southwestern New Brunswick and adjacent maine – a synthesis: Economic Geology Monographs, 11, 37–60.
  14. Williams, N., 2008, Geologically-Constrained UBC-GIF Gravity and Magnetic Inversions with Examples from the Agnew-Wiluna Greenstone Belt, Western Australia: University of British Columbia.