• Title/Summary/Keyword: geographic information system

Search Result 2,243, Processing Time 0.037 seconds

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Providing the combined models for groundwater changes using common indicators in GIS (GIS 공통 지표를 활용한 지하수 변화 통합 모델 제공)

  • Samaneh, Hamta;Seo, You Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.245-255
    • /
    • 2022
  • Evaluating the qualitative the qualitative process of water resources by using various indicators, as one of the most prevalent methods for optimal managing of water bodies, is necessary for having one regular plan for protection of water quality. In this study, zoning maps were developed on a yearly basis by collecting and reviewing the process, validating, and performing statistical tests on qualitative parameters҆ data of the Iranian aquifers from 1995 to 2020 using Geographic Information System (GIS), and based on Inverse Distance Weighting (IDW), Radial Basic Function (RBF), and Global Polynomial Interpolation (GPI) methods and Kriging and Co-Kriging techniques in three types including simple, ordinary, and universal. Then, minimum uncertainty and zoning error in addition to proximity for ASE and RMSE amount, was selected as the optimum model. Afterwards, the selected model was zoned by using Scholar and Wilcox. General evaluation of groundwater situation of Iran, revealed that 59.70 and 39.86% of the resources are classified into the class of unsuitable for agricultural and drinking purposes, respectively indicating the crisis of groundwater quality in Iran. Finally, for validating the extracted results, spatial changes in water quality were evaluated using the Groundwater Quality Index (GWQI), indicating high sensitivity of aquifers to small quantitative changes in water level in addition to severe shortage of groundwater reserves in Iran.

Development of a modified model for predicting cabbage yield based on soil properties using GIS (GIS를 이용한 토양정보 기반의 배추 생산량 예측 수정모델 개발)

  • Choi, Yeon Oh;Lee, Jaehyeon;Sim, Jae Hoo;Lee, Seung Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.449-456
    • /
    • 2022
  • This study proposes a deep learning algorithm to predict crop yield using GIS (Geographic Information System) to extract soil properties from Soilgrids and soil suitability class maps. The proposed model modified the structure of a published CNN-RNN (Convolutional Neural Network-Recurrent Neural Network) based crop yield prediction model suitable for the domestic crop environment. The existing model has two characteristics. The first is that it replaces the original yield with the average yield of the year, and the second is that it trains the data of the predicted year. The new model uses the original field value to ensure accuracy, and the network structure has been improved so that it can train only with data prior to the year to be predicted. The proposed model predicted the yield per unit area of autumn cabbage for kimchi by region based on weather, soil, soil suitability classes, and yield data from 1980 to 2020. As a result of computing and predicting data for each of the four years from 2018 to 2021, the error amount for the test data set was about 10%, enabling accurate yield prediction, especially in regions with a large proportion of total yield. In addition, both the proposed model and the existing model show that the error gradually decreases as the number of years of training data increases, resulting in improved general-purpose performance as the number of training data increases.

Numerical Analysis of Wind Environment around Sungnyemun Gate Using a Computational Fluid Dynamics Model (전산유체역학 모델을 이용한 숭례문 주변의 풍환경 수치해석)

  • Son, Minu;Kim, Do-Yong
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2021
  • In this study, the wind environment in an urban area near Sungneymun gate was numerically investigated in the cases of inflow directions. The wind fields for the target area were simulated using Geographic Information System data and Computational Fluid Dynamics model. Results, including vector fields, three-dimensional wind velocity components, and wind speeds, were analyzed to examine flow characteristics. Wind direction variability affected by buildings was shown in the target area. The complex flows around Sungneymun did not depend on the inflow direction as a boundary condition. The wind speed around Sungneymun was generally 3 times stronger at 14 m above ground level (AGL) compared to the surface wind at 2 m AGL and relatively high in the case of easterly inflow. The effect of wind was also analyzed to be relatively significant at the southeast side of Sungneymun. Thus, it was suggested that the assessment of wind environment affected by high-rise and high-density buildings should be necessary for the architectural heritage in urban areas.

Analysis on the Changes in Abandoned Paddy Wetlands as a Carbon Absorption Sources and Topographic Hydrological Environment (탄소흡수원으로서의 묵논습지 변화와 지형수문 환경 분석)

  • Miok, Park;Sungwon, Hong;Bonhak, Koo
    • Land and Housing Review
    • /
    • v.14 no.1
    • /
    • pp.83-97
    • /
    • 2023
  • The study aims to provide an academic basis for the preservation and restoration of abandoned paddy wetland and the enhancement of its carbon accumulation function. First, the temporal change of the wetlands was analysed, and a typological classification system for wetlands was attempted with the goal of carbon reduction. The types of wetland were classified based on three variables: hydrological environment, vegetation, and carbon accumulation, with a special attention on the function of carbon accumulation. The types of abandoned paddy wetlands were classified into 12 categories based on hydrologic variables- either high or low levels of water inflow potential-, vegetation variables with either dominance of aquatic plants or terrestrial plants, and three carbon accumulation variables including organic matter production, soil organic carbon accumulation, and decomposition. It was found that the development period of abandoned paddy analyzed with aerial photographs provided by the National Geographic Information Institute happened between 2010 and 2015. In the case of the wetland in Daejeon 1 (DJMN01) farming stopped by 1990 and it appeared to be a similar structure to natural wetlands after 2010 . Over the past 40 years the abandoned paddy wetland changed to a high proportion of forests and agricultural lands. As time went by, such forests and agricultural lands tended to decrease rapidly and the lands were covered by artificial grass and other types of forests.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

A Study on Area-Wide Integrated Termite Management for the Preservation of Wooden Built Heritage (목조건축문화재의 예방 보존을 위한 공간적 통합 흰개미 관리(AW-ITM)의 적용)

  • KIM, Sihyun;CHUNG, Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.60-72
    • /
    • 2022
  • A number of wooden built heritage remain in Korea, and most have been damaged by various biological factors including termite. Owing to the irreversible damage caused by termites, wooden built heritage are losing their authenticity and structural stability. In this study, Area-Wide Integrated Termite Management(AW-ITM) was proposed to prevent termite damage. First, to understand the locational characteristics of these sites, the distance from adjacent forests and surrounding forest areas was analyzed for 182 national designated wooden built heritage(national treasures, treasures) using the Geographic Information System(GIS). By analyzing existing pest control projects(2003-2020) and the components of the ITM, the characteristics of termite control for cultural heritages were determined. Based on these results, the cultural heritage sites and their surrounding spaces were divided into three areas, and the types of cultural properties were divided into six types according to the location and number of buildings. Along with this, termite control measures were proposed for each area and type. The concept of AW-ITM has been partially applied to the "Comprehensive Control of Termites in wooden built heritages Sites" by the Cultural Heritage Administration. Caution must be taken with regard to the establishment of a cultural heritage management policy; AW-ITM should be applied on a trial basis with the results then being carefully analyzed and reflected in the establishment of policies pertaining to the conservation management of cultural heritage.

Spatial modeling of mortality from acute lower respiratory infections in children under 5 years of age in 2000-2017: a global study

  • Almasi, Ali;Reshadat, Sohyla;Zangeneh, Alireza;Khezeli, Mehdi;Teimouri, Raziyeh;Naderi, Samira Rahimi;Saeidi, Shahram
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.12
    • /
    • pp.632-641
    • /
    • 2021
  • Background: Over the past few decades, various goals have been defined to reduce the mortality of children caused by acute lower respiratory infections (ALRIs) worldwide. However, few spatial studies to date have reported on ALRI deaths. Purpose: We aimed to assess the spatial modeling of mortality from ALRI in children under 5 years of age during 2000-2017 using a global data. Methods: The data on the mortality of children under 5 years old caused by ALRI were initially obtained from the official website of the World Health Organization. The income status of their home countries was also gathered from the Country Income Groups (World Bank Classification) website and divided into 5 categories. After that, in the ArcGIS 10.6 environment, a database was created and the statistical tests and related maps were extracted. The Global Moran's I statistic, Getis-Ord Gi statistic, and geographically weighted regression were used for the analyses. In this study, higher z scores indicated the hot spots, while lower z scores indicated the cold spots. Results: In 2000-2017, child mortality showed a downward trend from 17.6 per 100,000 children to 8.1 and had a clustered pattern. Hot spots were concentrated in Asia in 2000 but shifted toward African countries by 2017. A cold spot that formed in Europe in 2007 showed an ascending trend by 2017. Based on the results of geographically weighted regression test, the regions identified as the hot spots of mortality from ALRI in children under 5 years old were among the middle-income countries (R2=0.01, adjusted R2=8.77). Conclusion: While the total number of child deaths in 2000-2017 has decreased, the number of hot spots has increased among countries. This study also concluded that, during the study period, Central and Western Africa countries became the main new hot spots of deaths from ALRI.

An Analysis of Accessibility to Hydrogen Charging Stations in Seoul Based on Location-Allocation Models (입지배분모형 기반의 서울시 수소충전소 접근성 분석)

  • Sang-Gyoon Kim;Jong-Seok Won;Yong-Beom Pyeon;Min-Kyung Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.339-350
    • /
    • 2024
  • Purpose: This study analyzes accessibility of 10 hydrogen charging stations in Seoul and identifies areas that were difficult to access. The purpose is to re-analyze accessibility by adding a new location in terms of equity and safety of location placement, and then draw implications by comparing the improvement effects. Method: By applying the location-allocation model and the service area model based on network analysis of the ArcGIS program, areas with weak access were identified. The location selection method applied the 'Minimize Facilities' method in consideration of the need for rapid arrival to insufficient hydrogen charging stations. The limit distance for arrival within a specific time was analyzed by applying the average vehicle traffic speed(23.1km/h, Seoul Open Data Square) in 2022 to three categories: 3,850m(10minutes), 5,775m(15minutes), 7,700m(20minutes). In order to minimize conflicts over the installation of hydrogen charging stations, special standards of the Ministry of Trade, Industry and Energy applied to derive candidate sites for additional installation of hydrogen charging stations among existing gas stations and LPG/CNG charging stations. Result: As a result of the analysis, it was confirmed that accessibility was significantly improved by installing 5 new hydrogen charging stations at relatively safe gas stations and LPG/CNG charging stations in areas where access to the existing 10 hydrogen charging stations is weak within 20 minutes. Nevertheless, it was found that there are still areas where access remains difficult. Conclusion: The location allocation model is used to identify areas where access to hydrogen charging stations is difficult and prioritize installation, decision-making to select locations for hydrogen charging stations based on scientific evidence can be supported.

A Study on the Precise Lineament Recovery of Alluvial Deposits Using Satellite Imagery and GIS (충적층의 정밀 선구조 추출을 위한 위성영상과 GIS 기법의 활용에 관한 연구)

  • 이수진;석동우;황종선;이동천;김정우
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.363-368
    • /
    • 2003
  • We have successfully developed a more effective algorithm to extract the lineament in the area covered by wide alluvial deposits characterized by a relatively narrow range of brightness in the Landsat TM image, while the currently used algorithm is limited to the mountainous areas. In the new algorithm, flat areas mainly consisting of alluvial deposits were selected using the Local Enhancement from the Digital Elevation Model (DEM). The aspect values were obtained by 3${\times}$3 moving windowing of Zevenbergen & Thorno's Method, and then the slopes of the study area were determined using the aspect values. After the lineament factors in the alluvial deposits were revealed by comparing the threshold values, the first rank lineament under the alluvial deposits were extracted using the Hough transform In order to extract the final lineament, the lowest points under the alluvial deposits in a given topographic section perpendicular to the first rank lineament were determined through the spline interpolation, and then the final lineament were chosen through Hough transform using the lowest points. The algorithm developed in this study enables us to observe a clearer lineament in the areas covered by much larger alluvial deposits compared with the results extracted using the conventional existing algorithm. There exists, however, some differences between the first rank lineament, obtained using the aspect and the slope, and the final lineament. This study shows that the new algorithm more effectively extracts the lineament in the area covered with wide alluvlal deposits than in the areas of converging slope, areas with narrow alluvial deposits or valleys.

  • PDF