• Title/Summary/Keyword: genistein

Search Result 477, Processing Time 0.026 seconds

Sensitization of Radiation-Induced Cell Death by Genistein (제니스틴에 의한 방사선유발 세포사멸 민감도증가)

  • Kim, Tae Rim;Kim, In Gyu
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.91-94
    • /
    • 2010
  • A number of epidemiological studies as well as biological experiments, showed that genistein, one of the isoflavone, prevents prostate cancer occurrence. In this study, we showed that genistein inhibited the cell proliferation of human promyeoltic leukemia HL-60 cells and induced G2/M phase arrest. In addition, combination of genistein treatment and ${\gamma}$-irradiation displayed synergistic effect in apoptotic cell death of HL-60 cells. This means that the repair of genistein-induced DNA damage was hindered by ${\gamma}$-radiation and thus cell death was increased. In conclusion, genistein is one of the important chemicals that sensitize radiation-induced cell death.

GENISTEIN-INDUCED G2/M ARREST IS ASSOCIATED WITH p53-INDEPENDENT INDUCTION OF Cdk INHIBITOR $p21^{WAF1/CIP1}$ IN HUMAN CANCER CELLS

  • Park, Yung-Hyun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.9-13
    • /
    • 2001
  • Genistein, a natural isoflavonoid phytoestrogen, is a strong inhibitor of protein tyrosine kinase and DNA topoisomerase II activities. Genistein has been shown to have anticancer proliferation, differentiation and chemopreventive effects. In the present study, we have addressed the mechanism of action by which genistein suppressed the proliferation of p53-null human prostate carcinoma cells.(omitted)

  • PDF

Effect of Genistein and Daidzein on Antioxidant Defense System in C57BL/KsJ-db/db Mice (Genistein과 Daidzein 급여가 제2형 당뇨동물모델의 적혈구와 조직 중의 항산화방어계에 미치는 영향)

  • Park, Sun-Ae;Kim, Myung-Joo;Jang, Joo-Yeun;Choi, Myung-Sook;Yeo, Ji-Young;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1159-1165
    • /
    • 2006
  • Our preliminary study showed that genistein and daidzein improved blood glucose level in type 2 diabetic mice by enhancing the glucose and lipid metabolism. The objective of this study was to evaluate whether genistein and daidzein are associated with alterations in antioxidant defense mechanism of type 2 diabetic mice. Male C57BL/KsJ-db/db (db/db) mice and age-matched non-diabetic littermates (db/+) were used in this study. The db/db mice were divided into control, genistein (0.02%, w/w) and daidzein (0.02%, w/w) groups. The relative weights of liver, epididymal adipose tissue and perirenal adipose tissue were significantly higher in the db/db group than in the db/+ group, whereas heart weight was lower. The genistein and daidzein supplement did not affect the organ weights in db/db mice. The blood glucose level was positively correlated with superoxide dismutase (SOD, r=0.380, p<0.05) and catalase (CAT, r=0.345, p<0.05) activities and negatively correlated with glutathione peroxidase (GSH Px, r= 0.404, p<0.05) activity in erythrocyte. Therefore, the erythrocyte SOD and CAT activities were significantly elevated in the db/db group compared to the db/+ group and the GSH-Px activity was lowered. However, the supplementation of genistein and daidzein reversed erythrocyte CAT and GSH-Px activities in type 2 diabetic mice. In this current study, the SOD activities in liver, kidney and heart were significantly not different between the groups. The CAT and GSH-Px activities in liver and GSH-Px activity in kidney were significantly higher in the db/db group than in the db/+ group, while the CAT activity in kidney, CAT and GSH-Px activities in heart were lowered. The supplementation of genistein and daidzein significantly attenuated the changes of CAT and/or GSH-Px activities in liver and heart. The supplementation of genistein and daidzein elevated GSH levels in kidney and heart compared to the db/db control group. The lipid peroxide levels in liver, kidney and heart were significantly lowered in the genistein and daidzein supplemented groups compared to the db/db control group. These results suggest that genistein and daidzein might be beneficial for the prevention of type 2 diabetic complication via suppressing changes of antioxidant enzymes activities with simultaneous reduction of lipid peroxidation.

Genistein Suppresses TPA-Induced Matrix Metalloproteinases Activity and Cell Invasion in Human Breast Adenocarcinoma Cells (인체 유방암세포에서 TPA에 의해 유도된 matrix metalloproteinases 활성 및 침윤성 증대에 미치는 genistein의 영향)

  • Choi, Yung-Hyun;Kim, Sung-Ok
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.964-969
    • /
    • 2012
  • Genistein, a predominant isoflavone, has been shown to inhibit the growth of various cancer cells in vitro and in vivo without toxicity to normal cells. In the present study, we investigated the effects of genistein on the activity and the expression of matrix metalloproteinases (MMPs) in MCF-7 and MDA-MB-231 human breast adenocarcinoma cells. Our findings showed that MMP-9 and -2 activation was significantly increased in response to 12-O-tetradecanoyl phorbol-13-acetate (TPA). However, the increased activities of MMP-9 and -2 in TPA-treated cells were concentration-dependently inhibited by treatment with genistein, and this was also correlated with a decrease in the expression of their mRNA and proteins. In addition, a matrigel invasion assay showed that genistein reduced TPA-induced invasion of MCF-7 and MDA-MB-231 cells. Although further in vivo studies are needed, these results suggest that genistein treatment may inhibit tumor cell invasion and, therefore, act as a dietary source to decrease the risk of cancer metastasis.

Genistein-induced Growth Inhibition was Associated with Inhibition of Cyclooxygenase-2 and Telomerase Activity in Human Cancer Cells. (인체 암세포에서 genistein에 의한 cyclooxygenase-2 및 telomerase의 활성 저하)

  • Kim, Jung-Im;Kim, Seong-Yun;Seo, Min-Jeong;Lim, Hak-Seob;Lee, Young-Choon;Joo, Woo-Hong;Choi, Byung-Tae;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.884-890
    • /
    • 2008
  • Genistein, an isoflavone in soybean products, is a potential chemopreventive agent against various types of cancer. There are several studies documenting molecular alterations leading to cell cycle arrest at G2/M phase and induction of apoptosis; however, its mechanism of action and its molecular targets on the prostaglandin $E_2$ ($PGE_2$) production and telomere length regulation in human cancer remain unclear. In this study, we investigated the effect of genistein on the levels of cyclooxygenases (COXs) and telomere regulatory components of several human cancer cell lines (T24, human bladder carcinoma cells; U937, human leukemic cells; AGS, human stomach adenocarcinoma cells and SK-MEL-2, human skin melanoma cells). Genistein treatment resulted in the inhibition of cancer cell proliferation in a concentration-dependent manner. It was found that genistein treatment markedly decreased the levels of COX-2 mRNA and protein expression without significant changes in the expression of COX-1, which was correlated with a decrease in $PGE_2$ synthesis. Genistein treatment also partly inhibited the levels of human telomerase reverse transcriptase (hTERT) as well as human telomerase RNA (hTR) and telomerase-associated protein (TEP)-1, and the activity of telomerase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of genistein.

Induction of Apoptosis by Combined-treatment with Genistein and TRAIL in U937 Human Leukemia Cells (Genistein과 TRAIL의 복합처리에 의한 U937 인체 혈구암 세포의 Apoptosis 유도)

  • Choi, Yung-Hyun;Han, Min-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1201-1207
    • /
    • 2011
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been proposed as a potent tool to trigger apoptosis in cancer therapy. However, as many types of cancer cells remain resistant towards TRAIL-induced cytotoxicity, several combined therapy approaches aimed to sensitize cells to TRAIL have been developed. Genistein, a natural isoflavonoid phytoestrogen, has been shown to have anticancer activity by inducing cell cycle arrest at G2M phase as well as apoptosis in various cancer cell lines. In the present study, we showed that treatment with TRAIL in combination with subtoxic concentrations of genistein sensitized U937 human leukemia cells to TRAIL-mediated apoptosis. Combined treatment with genistein and TRAIL effectively activated caspases through Bid truncation (tBid) and down-regulation of cellular caspase-8 (FLICE)-like inhibitory proteinL ($cFLIP_L$). However, the apoptotic effects of co-treatment with genistein and TRAIL were significantly inhibited by specific caspase inhibitors, which demonstrates the important role of caspases in apoptosis induced by genistein and TRAIL. Overall, our results indicate that genistein can potentiate TRAIL-induced apoptosis through down-regulation of $cFLIP_L$ and up-regulation of pro-apoptotic tBid proteins.

Effects of Staurosporine and Genistein on Superoxide Generation and Degranulation in PMA- or C5a-Activated Neutrophils

  • Ha, Sung-Heon;Lee, Chung-Soo
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.210-215
    • /
    • 1995
  • Effects of staurosporine, genistein and pertussis toxin on PMA-induced superoxide generation and degranulation in neutrophils were investigated. Their effects were also examined in C5a-stimulated superoxide generation. PMA-induced superoxide generation was inhibited by staurosporine but was not affected by pertussis toxin. Genistein enhanced the stimulatory effect of PMA in a dose dependent fashion. C5a-induced superoxide generation was inhibited by staurosporine, genistein and pertussis toxin. An NADPH oxidase system of resting neutrophils was activated by PMA, and the stimulatory effect of PMA was inhibited by staurosporine but was not affected genistein and pertussis toxin. The activity of NADPH oxidase in the membrane fraction of PMA-activated neutrophils was not affected by staurosporine and genistein. PMA-induced acid phosphatase release was inhibited by staurosporine and genistein, whereas the effect of pertussis toxin was not detected. These results suggest' that the role of protein tyrosine kinase in neutrophil activation mediated by direct activation of protein kinase C may be different from receptor-mediated activation. The action of protein kinase C on the respiratory burst might be affected by the change of protein tyrosine kinase activity.

  • PDF

Biological Synthesis of Genistein in Escherichia coli

  • Kim, Bong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.770-776
    • /
    • 2020
  • Genistein is a type of isoflavonoid found predominantly in leguminous plants. Genistein has diverse biological activities, such as anthelmintic and antioxidant effects, as well as inhibitory effects on the growth of several cancers. In addition, genistein is well known as a phytoestrogen. In this study, we attempted to biologically synthesize genistein from either p-coumaric acid or naringenin using Escherichia coli as a biotransformation host. Four genes, Os4CL, PeCHS, RcIFS, and OsCPR, were used for genistein production. To functionally express RcIFS and OsCPR, two members of the cytochrome P450 family, in E. coli, the membrane-binding anchor domain of each gene was removed, and RcIFS and OsCPR were translationally fused to generate an RcIFS-OsCPR hybrid. Os4CL and PeCHS, or the RcIFS-OsCPR hybrid, were then transformed into E. coli BL21(DE3). Using these strains, we optimized our culture system at a laboratory scale in terms of the cell density, concentrations of substrate and isopropyl-β-D-thiogalactoside, temperature, and culture medium. Under the optimized culture conditions, genistein was produced at up to 35 mg/l and 18.6 mg/l using naringenin and p-coumaric acid, respectively.

Inhibitory Effect of Genistein on Agonist-Induced Modulation of Vascular Contractility

  • Je, Hyun Dong;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • The present study was undertaken to determine whether treatment with genistein, the plant-derived estrogen-like compound influences agonist-induced vascular smooth muscle contraction and, if so, to investigate related mechanisms. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Genistein completely inhibited KCl-, phorbol ester-, phenylephrine-, fluoride- and thromboxane $A_2$-induced contractions. An inactive analogue, daidzein, completely inhibited only fluoride-induced contraction regardless of endothelial function, suggesting some difference between the mechanisms of RhoA/Rho-kinase activators such as fluoride and thromboxane $A_2$. Furthermore, genistein and daidzein each significantly decreased phosphorylation of MYPT1 at Thr855 had been induced by a thromboxane $A_2$ mimetic. Interestingly, iberiotoxin, a blocker of large-conductance calcium-activated potassium channels, did not inhibit the relaxation response to genistein or daidzein in denuded aortic rings precontracted with fluoride. In conclusion, genistein or daidzein elicit similar relaxing responses in fluoride-induced contractions, regardless of tyrosine kinase inhibition or endothelial function, and the relaxation caused by genistein or daidzein was not antagonized by large conductance $K_{Ca}$-channel inhibitors in the denuded muscle. This suggests that the RhoA/Rho-kinase pathway rather than $K^+$- channels are involved in the genistein-induced vasodilation. In addition, based on molecular and physiological results, only one vasoconstrictor fluoride seems to be a full RhoA/Rho-kinase activator; the others are partial activators.

Anti-obesity Effects of Genistein in Female Ovariectomy-induced Obese Mice (난소절제로 비만이 유도된 암컷 쥐에서 제니스테인의 항비만 효과)

  • Jeong, Sun-Hyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.427-435
    • /
    • 2017
  • To investigate whether genistein regulates menopause-induced obesity, it was studied the effects of genistein on anti-obesity effects in female ovariectomized (OVX) mice, an animal model of postmenopausal women. 7-week-old female mice (C57BL/6J) were randomly divided into three groups. All the animals received a high fat diet or a high fat diet supplemented with genistein for 8 weeks and variables and determinants of obesity were measured. The OVX mice had significantly higher body weight and adipose tissue mass than sham mice. However, genistein supplementation reduced body weight, adipose tissue mass, and adipocyte size of OVX mice. The OVX mice treated with genistein had significantly lower levels of serum triglycerides and total cholesterol than the vehicle-treated OVX mice. Lipid accumulation in liver was also markedly decreased by genistein in OVX mice. The results suggest that genistein can effectively prevent adiposity, adipocyte phertrophy, and llipid disorders caused by ovariectomy. Moreover, this study may contribute to the alleviation of metabolic syndrome, including obesity and hyerlipidemia in postmenopausal women.