• 제목/요약/키워드: generalized reflexive matrix

검색결과 4건 처리시간 0.02초

ON THE REFLEXIVE SOLUTIONS OF THE MATRIX EQUATION AXB + CYD = E

  • Dehghan, Mehdi;Hajarian, Masoud
    • 대한수학회보
    • /
    • 제46권3호
    • /
    • pp.511-519
    • /
    • 2009
  • A matrix $P{\in}\mathbb{C}^{n{\times}n}$ is called a generalized reflection matrix if $P^*$ = P and $P^2$ = I. An $n{\times}n$ complex matrix A is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix P if A = PAP (A = -PAP). It is well-known that the reflexive and anti-reflexive matrices with respect to the generalized reflection matrix P have many special properties and widely used in engineering and scientific computations. In this paper, we give new necessary and sufficient conditions for the existence of the reflexive (anti-reflexive) solutions to the linear matrix equation AXB + CY D = E and derive representation of the general reflexive (anti-reflexive) solutions to this matrix equation. By using the obtained results, we investigate the reflexive (anti-reflexive) solutions of some special cases of this matrix equation.

LEAST SQUARES SOLUTIONS OF THE MATRIX EQUATION AXB = D OVER GENERALIZED REFLEXIVE X

  • Yuan, Yongxin
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.471-479
    • /
    • 2008
  • Let $R\;{\in}\;C^{m{\times}m}$ and $S\;{\in}\;C^{n{\times}n}$ be nontrivial unitary involutions, i.e., $R^*\;=\;R\;=\;R^{-1}\;{\neq}\;I_m$ and $S^*\;=\;S\;=\;S^{-1}\;{\neq}\;I_m$. We say that $G\;{\in}\;C^{m{\times}n}$ is a generalized reflexive matrix if RGS = G. The set of all m ${\times}$ n generalized reflexive matrices is denoted by $GRC^{m{\times}n}$. In this paper, an efficient method for the least squares solution $X\;{\in}\;GRC^{m{\times}n}$ of the matrix equation AXB = D with arbitrary coefficient matrices $A\;{\in}\;C^{p{\times}m}$, $B\;{\in}\;C^{n{\times}q}$and the right-hand side $D\;{\in}\;C^{p{\times}q}$ is developed based on the canonical correlation decomposition(CCD) and, an explicit formula for the general solution is presented.

  • PDF

NONNEGATIVE INTEGRAL MATRICES HAVING GENERALIZED INVERSES

  • Kang, Kyung-Tae;Beasley, LeRoy B.;Encinas, Luis Hernandez;Song, Seok-Zun
    • 대한수학회논문집
    • /
    • 제29권2호
    • /
    • pp.227-237
    • /
    • 2014
  • For an $m{\times}n$ nonnegative integral matrix A, a generalized inverse of A is an $n{\times}m$ nonnegative integral matrix G satisfying AGA = A. In this paper, we characterize nonnegative integral matrices having generalized inverses using the structure of nonnegative integral idempotent matrices. We also define a space decomposition of a nonnegative integral matrix, and prove that a nonnegative integral matrix has a generalized inverse if and only if it has a space decomposition. Using this decomposition, we characterize nonnegative integral matrices having reflexive generalized inverses. And we obtain conditions to have various types of generalized inverses.

THE (R,S)-SYMMETRIC SOLUTIONS TO THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB = C

  • Liang, Mao-Lin;Dai, Li-Fang;Wang, San-Fu
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1061-1071
    • /
    • 2009
  • For real generalized reflexive matrices R, S, i.e., $R^T$ = R, $R^2$ = I, $S^T$ = S, $S^2$ = I, we say that real matrix X is (R,S)-symmetric, if RXS = X. In this paper, an iterative algorithm is proposed to solve the least-squares problem of matrix equation AXB = C with (R,S)-symmetric X. Furthermore, the optimal approximation solution to given matrix $X_0$ is also derived by this iterative algorithm. Finally, given numerical example and its convergent curve show that this method is feasible and efficient.

  • PDF