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LEAST SQUARES SOLUTIONS OF THE MATRIX EQUATION
AXB =D OVER GENERALIZED REFLEXIVE X

YONGXIN YUAN

ABSTRACT. Let R € C™X™ and § € C™*" be nontrivial unitary involu-
tions, i.e., R* = R=R™! # I, and §* = § = S~ ! # [,. We say that
G € C™X" is a generalized reflexive matrix if RGS = G. The set of all
m X n generalized reflexive matrices is denoted by GRC™*™. In this pa-
per, an efficient method for the least squares solution X € GRC™*"
of the matrix equation AXB = D with arbitrary coefficient matrices
A € CPX™m B ¢ C"%9 and the right-hand side D € CP*9 is developed
based on the canonical correlation decomposition(CCD) and, an explicit
formula for the general solution is presented. |
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| 1. Introduction |

In this paper we shall adopt the following notation. C™*™ denotes the set of
all m x n complex matrices. UC™*™ denotes the set of all unitary matrices in
C"*", A* and }| A|| stand for the conjugate transpose and the Frobenius norm of
a complex matrix A, respectively. For A, B € C™*" we define an inner product
in C™*™ : (A, B) = trace(B*A), then C™*" is a Hilbert space. The matrix
norm || - || induced by the inner product is the Frobenius norm. I, represents
the identity matrix of size n. For A = (ay;), B = (bi;) € C™*™, Ax B represents
the Hadamard product of the matrices A and B, i.e., A* B = (a;;b;;) € C™*".

Throughout this paper R € C™*™ and § € C"*" are nontrivial unitary
involutions, i.e., R** = R=R™' # I, and S* = § = §7! # I,,. We say that
G € C™*" is a generalized reflexive matrix {5] if RGS = G. Let J, = (Jix)
represent the exchange matrix of order n defined by jix = din—k+1 for 1 <
i,k < n, where §; i is the Kronecker delta, i.e., J, is a matrix with ones on the
cross-diagonal and zeros elsewhere. By taking m = n,R = § = J,, then the
generalized reflexive matrices reduce to the centrosymmetric matrices {18} which
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play an important role in many areas [6, 8, 9, 16]. Therefore, centrosymmetric
matrices, whose special properties have been under extensive study [1, 2, 3,
4, 11, 15, 18, 19|, are a special case of generalized reflexive matrices. Chen
5] discussed applications that give rise to these matrices and considered least
squares problems involving them. In the following we denote the set of all m xn
generalized reflexive matrices by GRme" The linear matrix equation -

AXB=D (1)

has been considered by many authors. In [14] Penrose provided a sufficient and
necessary condition for consistency of this equation and, for the consistent case,
gave a representation of its general solution. Yuan [20, 21|, Khatri and Mi-
tra {12] got necessary and sufficient conditions for the existence of symmetric
solutions and symmetric positive semidefinite solutions as well as explicit for-
mulae using generalized inverses. Wang and Chang [17] studied least squares
symmetric solutions to the equation using the generalized singular value decom-
position(GSVD), and a sufficient and necessary condition for its solvability and
a representation of its general solution were also established therein. Recently,
Cvetkovic [7] discussed the reflexive solutions of (1). Unfortunately, this paper
didn’t provide the explicit solution formula for the general case.

In the present paper, we will consider least squares solutions of the matrix
equation (1) over generalized reflexive X, where A € CP*™ B € C"*? and
D e CP*9. Using the canonical correlation decomposition(CCD), we present
an explicit formula for the general solution. As a by-product of our results,
we obtain a necessary and sufficient condition on A, B, D for existence of X €
GRC™"" such that the equation of (1) holds, and a general form for all such
X . Clearly, the results obtained are shown to include those given in {3, 7, 13| as
particular cases.

2 The least squares solutions of the matrix equatxon (1)

~ If A is'an eigenvalue of K € C™*™, let Vi (A) denote the elgenspace of K
corresponding to the eigenvalue A\. We will say that a vector z € C™ is R-
symmetric (R-skew symmetric) if Rz = z (Rz = —2z); thus, Vg(1) and Vg(—1)
are the subspaces of C™*™ consisting respectively of R-symmetric and R-skew
symmetric vectors. Let 7 = dim[Vg(1)],s = dim[Vg(—1)]. Since a unitary
involution is diagonalizable and R # +I,,, then 7,5 > 1, and 7 + s = m. Let
{p1, -+ ,pr} and {q1, - ,qs} be the orthonormal bases for V(1) and Vg(-1)
respectwely, and deﬁne | | - - |

P [pla _l,pr] c mer’Q — [le cen sq.s] c Cm)(g’

then {P, Q] is a unitary matrix and R has the following spectral decomposition:
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Similarly, there are positive integers k and [ such that k 4+ 1 = n and the
matrices U € C™** and V € C™** whose column vectors form the orthonormal
bases for the eigenspaces V5(1)} and Vgs(—1), respectively. Thus, {U,V] is a
unitary matrix and $ has the spectral decomposition:

A [

In the following P,Q, U,V are always defined by (2) and (3).

(2) and (3) yield the following characterization of m x n generalized reflexive
matrices.

Lemma 1. G is a generalized reflexive matriz if and only if
_ Gey 0 v |
G—-[P,Q][ 0 Gov H V,.], (4)
where Gpy = P*GU,Gqy = Q*GV. -
Proof. 1t follows from (2) and (3) that

e A E FA R EA L

Let | A
pP* Gpuy Gpv
. |GIU,V|= :
[ Q ] i [ Gou Ggv ]
Then the relation of (5) holds if and only if |
Gpv =0, Ggu =0,
which implies the conclusion. | (]

For given matrices A; € CP*™ and A; € CP*?, without loss of generality, we
assume that rank(A;) > rank(A2), then the canonical correlation decomposi-
tion(CCD) ([10, Theorem 2.1]) of the matrix pair [A4;, 43] is

Ay = W[E;,0lM, A, =W[Qy,0|N, (6)

where M € C™*", N € C*** are nonsingular matrices and

i —

Ir1 0 0 T1

0 A] 0 S1

s, 0 0 0 h
0 0 0 P hl — 8 — tl R

0 @1 0 S)

I 0 0 Itl i th
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[ I., 0 0 ] ri
0 I, O S1
0 0 I [y
=g g p—hi—s1 -t ,
0 0 O 81
0 0 ) t .
™ S ll
li =hy—ry —s1, rank(4d;)=r+s1+ 4, iy = rank(As),
ry = rank(A;) + rank(As) — rank([A;, Ag})
Ap = diag{A{V, - Ay, o, = dlag{é? NS
with

1> AV > > > >0, o<V <oV <
A2+ )2 =1(6=1,-,5).

<o) <1,

W = [W,, W, Wi, Wy, Ws, Ws] € UCP*? is unitary with its columns parti-

tioned with that of the row partitions of X;, i.e., W, € CP*"t W, € CP**1 and

SO on.

Likewise, for given matrices B; € CF*9 and B, € C"‘q, we assume that

rank(Bl) > rank(Bz), then the CCD of the matrix pair [B}, B}] is
= H[Y,,0|E, B; = H[Q,0]F,
where E € Ck xk F € C*! are nonsingular matrices, and
L, 0 0 | ro
0 A 0 52
S = 0 0 O | Iy |
"1 0 0 0 g—hy—s2—t2
0 @2 0 S92
i 0 0 Itz i t2
re S  to |
I, 0 0 ] )
0 132 0 $2
0 0 I, s
= 0 0 0 g—hy —8s9—1ta
0 0 0 S92
0 0 0 | to
T2 Sy U

lo = ho — 1o — 89, rank(Bl)iz Ty + So + tg, ho = rank(B3),

To = rank(Bl) + I'aank(BZ) - rank([B;’ B;])v
Az = diag{\{?,

with

1> >0 >

(A2

A2 @, = diag{6?, - -

229 >0 0<6? < 9‘2’ <.
+ (02 =1 (z =1,

’ 82)'-

(2) 21

. <82 <

(7)
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H = |H,, Hy, Hs, Hy, Hs, Hg] € UC?Y is unitary with its columns parti-
tioned in conformal sizes.

Theorem 1. For given matrices A € CP*™ B € C™ 9 and D € CP*9, de-
note AP, AQ,U*B and V*B by A,, Az, By and By, respectively. Suppose that
the CCDs of the matriz pairs (A1, A2] and [Bf, B3] are given by (6) and (7),
respectively. Partition W*DH into the following form.:

W*DH — D3y Dip D33 D3y D3s Dae (8)

where D;; = W 'DH;, ¢, 7 = 1,2,3,4,5,6. Then the least squares solution
X € GRC™*" of the matriz equation (1) can be expressed as

'y o][U"
where | -
 Du—-Zn D156y Die Yig |
Y = M- ©1 ' Ds; Y2 A1Dy + ©1Ds6 Yoy (E*)!
De) De2A2 + Des©O2 Deg Ya4 (1’0)
Yy Yyo | Yi3 Yaa
I 211 D12 — D15©5'A2 Dys3 Zia
7 N-1| P21 — MOT'Dsy Doy —AMYeAy Doz Zog (F*)1,
| D3 -~ D3z D33 Zzg (11)
! Za1 - - Zg2 Z43  Zag |
Yoo = & % (A1 D350, + ©1 DsaAs + ©1D5503) (12)
with | |
P = [¢y;], ¢i; = =1,--,81; J =1, , 80,

1 =
2 IS
ND2EPy2 + (682
and Z11,Yia, 24, Y45, 245 (1 =1,2,3,4; j =1,2,3) are arbitrary matrices.

Proof. If X € GRC™*", it follows from Lemma 1 that there exist Y € C™*¥
and Z € C**! satisfying

X=[P,Q][’g g”g] (13)
Therefore, | |

”AXB — D” = ”A]YBl + Ay Z By — D“ (14)
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It follows from (6), (7) and the unitary invariance of Frobenius norm that the
relation of (14) is equivalent to

|AXB - D|| = [|[Z1,0lMY E*[S2,0]* + [, 0)N ZF*[Qs, 0]

Write

MYFE* =

NZF* =

r2

S2

a2

L

"-W'DH|.
- (195)

(16)

an

whereal =Tr—rTr —8 *-—tj, bz = k——Tg—-Sz—tg, b1 =8§—7T1 — 81 -—ll, az =
| — r9 — 83 — l3. Inserting (8), (16) and (17) into (15), we get

|IAXB — DI =

Z13 — Dy3

Zoz — D3

Z33 — D33
- —=Dy3
—Ds3
—Deg3

Yin+2Zn - Dn

- YA+ Zi2 — Dio
A1Yar + Z21 — Dar MiYa2lo + Z32 — 1?22

431 — D3y 232 — D3
—Dgy —Dya
©1Y21 — Ds; ©1Y22A2 — Ds
Y31 — Dg; Y32A2 — De2

—D1s Y1202 — Dy Y13 — Dis
—Doq A1Y2209 — Dos  A1Yaz — Dog
— D3y —D3s —Da3g
—Dyy4 —Dys —Dye
—Dsqg ©1Y2202 — Dss ©1Y23 — Dsg
—Dgg Y3202 — Des Y33 — Des

Therefore, |AXB — D|| = min if and only if |
Y13 = Die, Ya1 = De1_,;.Y33 = Degg,

Z13 = Dha, Zp3 = Dq3, Z3y = D3y, Z3g = D3y, Z3zg = D33z,

Y11 + Z11 — D11}} = min,

“Y12A2 + 212 — -DH!”:2 +“le@2 — 1)15”2 = min,

“A1Y21_.:+ Zo — D2.1||2_ + uelyzl — D51,||2~ = min,

(18)

- (19)

(20)

(21)

(22)

(23)



Least squares solutions of the matrix equation AXB = D 477

|A1Y22A2 + Zog — Dag||? + ||A1Y2202 — Dys||?

S (94
+][©1Y22A2 — Ds2||? + |©1Y2202 — Dss||* = min. (: )
|A1Y23 — Daog||* + ||©1Ya3 — Dsgl|? = min, (25)
|Y32A2 — Dga||® + ||_Y32@2 — Dgs||? = min, - (26)
From (21), (22) and (23), we have |
Y =Dy — Zh, (27)
Yia = Dm@;’, Ziz =°D12 — D1505 A, (28)
Yo; = ©7' D51, Zay = Doy — A107! Ds,. (29)
Clearly, the minimization problem (24) is equivalent to |
Zyy = Doy — A1Y22A2 (30)
and o
f(Ya2) = [[A1 Y2202 — Dos||® + [[©1Ya2A2 — Dsa||? + [|©1Y2202 — Dss[|* = min.
Let Dys = [d(zs)] [d(sz)] = [dg-’s)] € C**%2 and Yo = [yi5] €
Cs1x52 then
S1 82 | 9
fYe) = 3% ( MVyi;62 — a2
=1 4=1
' 2
+ 6y A% - d“"z’l + [9“’ 30 — di>” ) .
Now we minimize the quantities
| 2
Qi; = )\El)yz‘j 9§2) Yij A(2) yzye(z) dﬁ-’"’_’ ’

1 <3 < sy 1<3<32
It is easy to obtain the minimizers
Agl)dgmg-g?) ggl)dg‘z))\;z) e(l)d(55)9(2) | | N
A2E2 + 02 T (31)
By rewriting (31) in matrix form, we immediately obtain (12).
In a similar way, from (25) and (26), we get

Yag = Ay Dog + O, Dsg, (32)

Yij =

Ya2 = DezAg + DgsOsq. (33)
Substituting (19), (20), (27), (28), (29), (30), (32) and (33) into (16) and (17)
yields (9). | | (]

From (18), we can easily obtain the following corollary.
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Corollary 1. Under the same assumptions as in Theorem 1, then matrixz equa-

‘tion (1) has a solution X € GRC™" if and only if

Ds3 =0, De3 =0, D35 =0, D3 =0,
Diy =0, Dy; =0, 4,j =1,2,3,4,5,6;
DexA;' = Des©; ', A7 Dag = O7 ' Dsg,
AT D505 = ©7'Dss©; ! = O7 ' DsaA;

In this case, the general solution can expressed as

x=pal| g 2]V

where o
[ Dy - Z1 1215951 1 1316 Yig |
- ©7'D AT Dyp©5° AT D Y. oy —
Y = M~} 1 51 1 259 1 1726 24 E* 1’
D¢, DeaA? - Des Y34 (E7)
Yy Yo Yas.  Yaq |
. Zy D12 — D15©5'Ay Dis Zys ]
7= N-1| Dau— MOT'Dsi Dy — D3s©;'Ay Doz Zog (F)~!
| | D3 D3 D33 Zz ’
] Za Za2 Zy3  Zga

and Z11,Yi4, Zia, Ya5,245 (1 =1,2,3,4; j =1,2,3) are arbitrary matrices.

10.
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