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ON THE REFLEXIVE SOLUTIONS OF THE MATRIX
EQUATION AXB + CY D = E

Mehdi Dehghan and Masoud Hajarian

Abstract. A matrix P ∈ Cn×n is called a generalized reflection matrix
if P ∗ = P and P 2 = I. An n×n complex matrix A is said to be a reflexive
(anti-reflexive) matrix with respect to the generalized reflection matrix
P if A = PAP (A = −PAP ). It is well-known that the reflexive and
anti-reflexive matrices with respect to the generalized reflection matrix
P have many special properties and widely used in engineering and sci-
entific computations. In this paper, we give new necessary and sufficient
conditions for the existence of the reflexive (anti-reflexive) solutions to
the linear matrix equation AXB + CY D = E and derive representation
of the general reflexive (anti-reflexive) solutions to this matrix equation.
By using the obtained results, we investigate the reflexive (anti-reflexive)
solutions of some special cases of this matrix equation.

1. Introduction

Throughout the paper, we denote the complex n-vector space by Cn and the
set of m×n complex matrices by Cm×n. The symbols At and A∗ stand for the
transpose and the conjugate transpose of a complex matrix A, respectively. We
denote a reflexive inverse of a matrix A by A+ which satisfies simultaneously
AA+A = A and A+AA+ = A+. We denote by In the n × n identity matrix.
We also write it as I, when the dimension of this matrix is clear. Moreover,
given a matrix A, define LA = I −A+A and RA = I −AA+, where A+ is any
arbitrary but fixed reflexive inverse of the matrix A.

Let P be a generalized reflection matrix of size n, that is, P ∗ = P and
P 2 = I. The following two special classes of subspaces in Cn×n

Cn×n
r (P ) = {A ∈ Cn×n : A = PAP},
Cn×n

a (P ) = {A ∈ Cn×n : A = −PAP},
are proposed by Chen [3], Chen and Sameh [5]. The matrices A in Cn×n

r (P )
and B in Cn×n

a (P ) are, respectively, said to be the reflexive and anti-reflexive
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matrices with respect to the generalized reflection matrix P . The reflexive
and anti-reflexive matrices with respect to the generalized reflection matrix
P have many special properties and widely used in engineering and scientific
computations [3, 4, 5]. We know that matrix equation is one of the topics of
very active research in the computational mathematics, and a large number
of papers have presented various methods for solving several matrix equations
[8, 11, 12, 25, 26, 27, 28]. The matrix equation

AX − Y B = C,

with the unknown matrices X and Y has been investigated by Baksalary and
Kala [1], Flanders and Wimmer [20], and Roth [22]. In [9], Cvetković-Ilić
considered Re-nnd solutions of the matrix equation

AXB = C,

with respect to X. In [23], Wang considered the system of matrix equations

A1XB1 = C1 and A2XB2 = C2,

over an arbitrary regular ring with identity and derived the necessary and
sufficient conditions for the existence and the expression of the general solution
to the system. Also Wang in [24], considered the system of four linear matrix
equations over an arbitrary von Neumann regular ring with identity. For the
matrix equation

(1.1) AXB + CY D = E,

solvability conditions and general solutions have been derived [2, 6, 29] by using
generalized inverses and the general singular value decomposition (GSVD) of
the matrices. In [13], several iterative algorithms are proposed to solve (1.1)
over reflexive and anti-reflexive matrices. Dehghan and Hajarian [10] proposed
an iterative method for solving the generalized coupled Sylvester matrix equa-
tions over reflexive matrices. Zhou and Duan [30, 31] established the solution of
the several generalized Sylvester matrix equations. On the solutions of matrix
equations, Ding and Chen presented the hierarchical gradient-iterative (HGI)
algorithms for general matrix equations [14, 19] and hierarchical least-squares-
iterative (HLSI) algorithms for generalized coupled Sylvester matrix equations
and general coupled matrix equations [15, 16]. The HGI algorithms [14, 19]
and HLSI algorithms [16, 18, 19] for solving general (coupled) matrix equations
are an innovational and computationally efficient numerical ones and were pro-
posed based on the hierarchical identification principle [15, 17] which regards
the unknown matrix as the system parameter matrix to be identified.

The reflexive and anti-reflexive matrices are two classes of important matri-
ces and have practical applications in information theory, linear system theory,
linear estimate theory and numerical analysis. We know that the reflexive and
anti-reflexive solutions of the matrix equation (1.1) have not been concerned
yet. In this paper, we will discuss about the reflexive and anti-reflexive solu-
tions of (1.1).
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This paper is organized as follows: In Section 2 we first review some structure
properties of the generalized reflection matrix P and the subspaces Cn×n

r (P )
and Cn×n

a (P ) of Cn×n. Then we present the necessary and sufficient conditions
for the existence of the reflexive (anti-reflexive) solutions and give the repre-
sentation of the reflexive (anti-reflexive) solutions to the matrix equation (1.1).
In Section 3 some special cases of the matrix equation (1.1) will be considered.

2. Main results

In this section we first review some structure properties of the generalized re-
flection matrix P and the subspaces Cn×n

r (P ) and Cn×n
a (P ) of Cn×n. Then we

give the necessary and sufficient conditions for the existence and the expression
of the reflexive and anti-reflexive solutions to the matrix equation (1.1).

Let P ∈ Cn×n be a generalized reflection matrix. We can express the matrix
P by the following form [7, 21]:

(2.1) P = U

(
Ir 0
0 −In−r

)
U∗,

where U = (U1, U2) is an unitary matrix and U1 ∈ Cn×r, U2 ∈ Cn×(n−r).

Lemma 2.1 ([21]). The matrix A ∈ Cn×n
r (P ) if and only if A can be expressed

as

(2.2) A = U

(
A1 0
0 A4

)
U∗,

where A1 ∈ Cr×r, A4 ∈ C(n−r)×(n−r) and U , U∗ are as in (2.1).

Lemma 2.2 ([21]). The matrix A ∈ Cn×n
a (P ) if and only if A can be expressed

as

(2.3) A = U

(
0 A2

A3 0

)
U∗,

where A2 ∈ Cr×(n−r), A3 ∈ C(n−r)×r and U , U∗ are as in (2.1).

Without loss of generality, we assume that matrices A, B, C, D, E ∈ Cn×n

have the following decompositions:
(2.4)



A =U

(
A1 A2

A3 A4

)
U∗, B =U

(
B1 B2

B3 B4

)
U∗, C =U

(
C1 C2

C3 C4

)
U∗,

D =U

(
D1 D2

D3 D4

)
U∗, E =U

(
E1 E2

E3 E4

)
U∗ and E′ = U∗EU,

where A1, B1, C1, D1, E1 ∈ Cr×r and A4, B4, C4, D4, E4 ∈ C(n−r)×(n−r).
The following theorems represent the general conditions for the existence

and the expression of the reflexive and anti-reflexive solutions of the matrix
equation (1.1), respectively.
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Theorem 2.1. Given A,B,C, D,E ∈ Cn×n and a generalized reflection matrix
P of size n. Then the following conditions are equivalent:

(1) The matrix equation AXB + CY D = E has the reflexive solutions
X, Y ∈ Cn×n

r (P ).
(2) The following matrix equation has a solution:

(2.5) A′X1B
′ + A′′X4B

′′ + C ′Y1D
′ + C ′′Y4D

′′ = E′,

where

(2.6)





A′ = (At
1, A

t
3)

t, B′ = (B1, B2), A′′ = (At
2, A

t
4)

t, B′′ = (B3, B4),

C ′ = (Ct
1, C

t
3)

t, D′ = (D1, D2), C ′′ = (Ct
2, C

t
4)

t, D′′ = (D3, D4).

(3) The following system of matrix equations has a solution:

(2.7)





A1X1B1 + A2X4B3 + C1Y1D1 + C2Y4D3 = E1,

A1X1B2 + A2X4B4 + C1Y1D2 + C2Y4D4 = E2,

A3X1B1 + A4X4B3 + C3Y1D1 + C4Y4D3 = E3,

A3X1B2 + A4X4B4 + C3Y1D2 + C4Y4D4 = E4.

In that case, the reflexive solutions of the matrix equation AXB + CY D = E
can be expressed by the following

X = U

(
X1 0
0 X4

)
U∗ and Y = U

(
Y1 0
0 Y4

)
U∗.

Proof. First we show that (2) ⇔ (3): Substituting (2.6) into (2.5), gives us the
system of matrix equations (2.7). This implies that (2) ⇔ (3).

(1) ⇔ (3): Suppose that the matrix equation (1.1) has the reflexive solutions
X ∈ Cn×n

r (P ) and Y ∈ Cn×n
r (P ). By Lemma 2.1, there exist X1, Y1 ∈ Cr×r

and X4, Y4 ∈ C(n−r)×(n−r) such that:

X = U

(
X1 0
0 X4

)
U∗ and Y = U

(
Y1 0
0 Y4

)
U∗.

Now using the decompositions (2.4), from AXB + CY D = E, we can get



A1X1B1 + A2X4B3 + C1Y1D1 + C2Y4D3 A1X1B2 + A2X4B4 + C1Y1D2 + C2Y4D4

A3X1B1 + A4X4B3 + C3Y1D1 + C4Y4D3 A3X1B2 + A4X4B4 + C3Y1D2 + C4Y4D4




=
(

E1 E2

E3 E4

)
.

If the system of matrix equations (2.7) has a solution, then

X = U

(
X1 0
0 X4

)
U∗ ∈ Cn×n

r (P ), Y = U

(
Y1 0
0 Y4

)
U∗ ∈ Cn×n

r (P )

and AXB + CY D = E. ¤
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Similarly to the proof of Theorem 2.1, we can prove the following theorem.

Theorem 2.2. Given A,B,C, D,E ∈ Cn×n and a generalized reflection matrix
P of size n. Then the following conditions are equivalent:

(1) The matrix equation AXB + CY D = E has the anti-reflexive solutions
X, Y ∈ Cn×n

a (P ).
(2) The following matrix equation has a solution:

(2.8) A′′X3B
′ + A′X2B

′′ + C ′′Y3D
′ + C ′Y2D

′′ = E′,

where

(2.9)





A′ = (At
1, A

t
3)

t, B′ = (B1, B2), A′′ = (At
2, A

t
4)

t, B′′ = (B3, B4),

C ′ = (Ct
1, C

t
3)

t, D′ = (D1, D2), C ′′ = (Ct
2, C

t
4)

t, D′′ = (D3, D4).

(3) The following system of matrix equations has a solution:

(2.10)





A2X3B1 + A1X2B3 + C2Y3D1 + C1Y2D3 = E1,

A2X3B2 + A1X2B4 + C2Y3D2 + C1Y2D4 = E2,

A4X3B1 + A3X2B3 + C4Y3D1 + C3Y2D3 = E3,

A4X3B2 + A3X2B4 + C4Y3D2 + C3Y2D4 = E4.

In that case, the anti-reflexive solutions of the matrix equation AXB+CY D =
E can be expressed by the following

X = U

(
0 X2

X3 0

)
U∗ and Y = U

(
0 Y2

Y3 0

)
U∗.

The above theorems are very general and they represent just the starting
point in the search for the more operative condition in the particular cases.

3. Some special cases

In this section, we will consider the special cases when B1 = B2 = D1 =
D2 = 0 or A1 = A3 = C1 = C3 = 0 ( B1 = B2 = D1 = D2 = 0 or A2 = A4 =
C2 = C4 = 0). We find necessary and sufficient conditions for the existence
of the reflexive (anti-reflexive) solutions X ∈ Cn×n

r (P ) and Y ∈ Cn×n
r (P )

(X ∈ Cn×n
a (P ) and Y ∈ Cn×n

a (P )). The following cases are important in
applications.

Theorem 3.1. Let A,B, C, D, E ∈ Cn×n be given matrices. If B1 = B2 =
D1 = D2 = 0 or A1 = A3 = C1 = C3 = 0, then the following conditions are
equivalent:

(1) The matrix equation AXB + CY D = E has the reflexive solutions X ∈
Cn×n

r (P ) and Y ∈ Cn×n
r (P );

(2) RMRA′′E
′ = 0, RA′′E

′LD′′ = 0, E′LB′′LN = 0, RC′′E
′LB′′ = 0;

(3) MM+RA′′E
′D′′+D′′ = RA′′E

′, C ′′C ′′+E′LB′′N
+N = E′LB′′ ;
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(4) RP RC′′E
′ = 0, RC′′E

′LB′′ = 0, RA′′E
′LD′′ = 0, E′LD′′LQ = 0;

(5) PP+RC′′E
′B′′+B′′ = RC′′E

′, A′′A′′+E′LD′′Q+Q = E′LD′′ ; where
A′′ = (At

2, A
t
4)

t, B′′ = (B3, B4), C ′′ = (Ct
2, C

t
4)

t, D′′ = (D3, D4), M =
RA′′C

′′, N = D′′LB′′ , S = C ′′LM , T = RD′′N, F = NLT , G = RSC ′′, P =
RC′′A

′′, Q = B′′LD′′ , S1 = A′′LP , T1 = RB′′Q and G1 = RS1A
′′.

In that case, the reflexive solutions of the matrix equation AXB+CY D = E
can be expressed by the following

X = U

(
X1 0
0 X4

)
U∗ and Y = U

(
Y1 0
0 Y4

)
U∗,

where

X4 = A′′+(E′ − C ′′Y4D
′′)B′′+ + LA′′J + ZRB′′ ,

Y4 = M+RA′′E
′D′′+ + LM (V − S+SV NN+)

− LMS+C ′′LGWTN+ + (W −G+GWTT+)RD′′ ,

or

X4 = P+RC′′E
′B′′+ + LP (V1 − S+

1 S1V1QQ+)

− LP S+
1 A′′LG1W1T1Q

+ + (W1 −G+
1 G1W1T1T

+
1 )RB′′ ,

Y4 = C ′′+(E′ − C ′′X4D
′′)D′′+ + LC′′J1 + Z1RD′′ ,

and X1, Y1, J, J1, V, V1,W,W1, Z, Z1 are arbitrary matrices with appropriate di-
mensions.

Proof. Let B1 = B2 = D1 = D2 = 0 or A1 = A3 = C1 = C3 = 0. Suppose
that X ∈ Cn×n

r (P ) and Y ∈ Cn×n
r (P ) are the reflexive solutions of the matrix

equation (1.1). We can assume that X and Y are represented by

X = U

(
X1 0
0 X4

)
U∗ and Y = U

(
Y1 0
0 Y4

)
U∗.

Now, from (2.5) and (2.6) we can get

(3.1) A′′X4B
′′ + C ′′Y4D

′′ = E′.

It is well-known that [23] the following conditions are equivalent:
(1) The matrix equation A′′X4B

′′ + C ′′Y4D
′′ = E′ has a solution.

(2) RMRA′′E
′ = 0, RA′′E

′LD′′ = 0, E′LB′′LN = 0, RC′′E
′LB′′ = 0.

(3) MM+RA′′E
′D′′+D′′ = RA′′E

′, C ′′C ′′+E′LB′′N
+N = E′LB′′ .

(4) RP RC′′E
′ = 0, RC′′E

′LB′′ = 0, RA′′E
′LD′′ = 0, E′LD′′LQ = 0.

(5) PP+RC′′E
′B′′+B′′ = RC′′E

′, A′′A′′+E′LD′′Q+Q = E′LD′′ .
In that case the general solutions of (3.1) are represented by:

X4 = A′′+(E′ − C ′′Y4D
′′)B′′+ + LA′′J + ZRB′′ ,

Y4 = M+RA′′E
′D′′+ + LM (V − S+SV NN+)

− LMS+C ′′LGWTN+ + (W −G+GWTT+)RD′′ ,
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or

X4 = P+RC′′E
′B′′+ + LP (V1 − S+

1 S1V1QQ+)

− LP S+
1 A′′LG1W1T1Q

+ + (W1 −G+
1 G1W1T1T

+
1 )RB′′ ,

Y4 = C ′′+(E′ − C ′′X4D
′′)D′′+ + LC′′J1 + Z1RD′′ ,

where J, J1, V, V1, W,W1, Z, Z1 are arbitrary matrices with appropriate dimen-
sions. ¤

Similarly to the proof of Theorem 3.1, we can demonstrate the following
theorem.

Theorem 3.2. Let A,B, C, D, E ∈ Cn×n be given matrices. If B1 = B2 =
D1 = D2 = 0 or A2 = A4 = C2 = C4 = 0, then the following conditions are
equivalent:

(1) The matrix equation AXB + CY D = E has the reflexive solutions X ∈
Cn×n

a (P ) and Y ∈ Cn×n
a (P );

(2) RMRA′E
′ = 0, RA′E

′LD′′ = 0, E′LB′′LN = 0, RC′E
′LB′′ = 0;

(3) MM+RA′E
′D′′+D′′ = RA′E

′, C ′C ′+E′LB′′N
+N = E′LB′′ ;

(4) RP RC′E
′ = 0, RC′E

′LB′′ = 0, RA′E
′LD′′ = 0, E′LD′′LQ = 0;

(5) PP+RC′E
′B′′+B′′ = RC′E

′, A′A′+E′LD′′Q+Q = E′LD′′ ; where A′ =
(At

1, A
t
3)

t, B′′ = (B3, B4), C ′ = (Ct
1, C

t
3)

t, D′′ = (D3, D4), M = RA′C
′, N =

D′′LB′′ , S = C ′LM , T = RD′′N, F = NLT , G = RSC ′, P = RC′A
′, Q =

B′′LD′′ , S1 = A′LP , T1 = RB′′Q and G1 = RS1A
′.

In that case, the anti-reflexive solutions of the matrix equation AXB +
CY D = E can be expressed by the following

X = U

(
0 X2

X3 0

)
U∗ and Y = U

(
0 Y2

Y3 0

)
U∗,

where

X2 = A′+(E′ − C ′Y2D
′′)B′′+ + LA′J + ZRB′′ ,

Y2 = M+RA′E
′D′′+ + LM (V − S+SV NN+)

− LMS+C ′LGWTN+ + (W −G+GWTT+)RD′′ ,

or

X2 = P+RC′E
′B′′+ + LP (V1 − S+

1 S1V1QQ+)

− LP S+
1 A′LG1W1T1Q

+ + (W1 −G+
1 G1W1T1T

+
1 )RB′′ ,

Y2 = C ′+(E′ − C ′X2D
′′)D′′+ + LC′J1 + Z1RD′′ ,

and X3, Y3, J, J1, V, V1,W,W1, Z, Z1 are arbitrary matrices with appropriate di-
mensions.
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4. Conclusion

In this paper, we have discussed the reflexive and anti-reflexive solutions
of the matrix equation AXB + CY D = E. We have derived necessary and
sufficient conditions for the existence and the expression of the reflexive and
anti-reflexive solutions to the matrix equation (1.1). Some special cases of
the matrix equation (1.1) have been considered in Section 3. The solvability
conditions and explicit formulae for the solutions to the special cases have been
also given.
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