• Title/Summary/Keyword: generalized quasi-game

Search Result 6, Processing Time 0.02 seconds

WEIGHT NASH EQUILIBRIA FOR GENERALIZED MULTIOBJECTIVE GAMES

  • Kim, Won Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • The purpose of this paper is to give a new existence theorem of a generalized weight Nash equilibrium for generalized multiobjective games by using the quasi-variational inequality due to Yuan.

  • PDF

A STRONG SOLUTION FOR THE WEAK TYPE II GENERALIZED VECTOR QUASI-EQUILIBRIUM PROBLEMS

  • Kim, Won-Kyu;Kum, Sang-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.599-610
    • /
    • 2006
  • The aim of this paper is to give an existence theorem for a strong solution of generalized vector quasi-equilibrium problems of the weak type II due to Hou et al. using the equilibrium existence theorem for 1-person game, and as an application, we shall give a generalized quasivariational inequality.

SETVALUED MIXED QUASI-EQUILIBRIUM PROBLEMS WITH OPERATOR SOLUTIONS

  • Ram, Tirth;Khanna, Anu Kumari;Kour, Ravdeep
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.83-97
    • /
    • 2022
  • In this paper, we introduce and study generalized mixed operator quasi-equilibrium problems(GMQOEP) in Hausdorff topological vector spaces and prove the existence results for the solution of (GMQOEP) in compact and noncompact settings by employing 1-person game theorems. Moreover, using coercive condition, hemicontinuity of the functions and KKM theorem, we prove new results on the existence of solution for the particular case of (GMQOEP), that is, generalized mixed operator equilibrium problem (GMOEP).

A REMARK ON MULTI-VALUED GENERALIZED SYSTEM

  • Kum, Sangho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.163-169
    • /
    • 2011
  • Recently, Kazmi and Khan [7] introduced a kind of equilibrium problem called generalized system (GS) with a single-valued bi-operator F. In this note, we aim at an extension of (GS) due to Kazmi and Khan [7] into a multi-valued circumstance. We consider a fairly general problem called the multi-valued quasi-generalized system (in short, MQGS). Based on the existence of 1-person game by Ding, Kim and Tan [5], we give a generalization of (GS) in the name of (MQGS) within the framework of Hausdorff topological vector spaces. As an application, we derive an existence result of the generalized vector quasi-variational inequality problem. This result leads to a multi-valued vector quasi-variational inequality extension of the strong vector variational inequality (SVVI) due to Fang and Huang [6] in a general Hausdorff topological vector space.

On the browder-hartman-stampacchia variational inequality

  • Chang, S.S.;Ha, K.S.;Cho, Y.J.;Zhang, C.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.493-507
    • /
    • 1995
  • The Hartman-Stampacchia variational inequality was first suggested and studied by Hartman and Stampacchia [8] in finite dimensional spaces during the time establishing the base of variational inequality theory in 1960s [4]. Then it was generalized by Lions et al. [6], [9], [10], Browder [3] and others to the case of infinite dimensional inequality [3], [9], [10], and the results concerning this variational inequality have been applied to many important problems, i.e., mechanics, control theory, game theory, differential equations, optimizations, mathematical economics [1], [2], [6], [9], [10]. Recently, the Browder-Hartman-Stampaccnia variational inequality was extended to the case of set-valued monotone mappings in reflexive Banach sapces by Shih-Tan [11] and Chang [5], and under different conditions, they proved some existence theorems of solutions of this variational inequality.

  • PDF