
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 13, No.1, June 2000

WEIGHT NASH EQUILIBRIA FOR

GENERALIZED MULTIOBJECTIVE GAMES
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Abstract. The purpose of this paper is to give a new existence

theorem of a generalized weight Nash equilibrium for generalized

multiobjective games by using the quasi-variational inequality due

to Yuan.

Recently the study of existence of weight Nash equilibria in game

theory with vector payo�s has been extensively studied by a number

of authors, e.g., see [2-4, 7-11] and the references therein. The mo-

tivation for the study of multicriteria models can be found in [2, 7]

and the existence of Nash equilibria is one of the fundamental prob-

lem in the game theory. In a recent paper [10], Yu and Yuan proved

some existence theorems of weight Nash equilibria by using Ky Fan's

minimax inequality; and hence they provided an uni�ed study for the

existences of Pareto equilibria and Nash equilibria in multiobjective

game under weaker conditions.

In this paper, we �rst introduce the new concepts of generalized

multiobjective game and generalized weight Nash equilibrium. Next

using the quasi-variational inequlity due to Yuan [11], we will prove

the existence theorem of generalized weight Nash equilibria under

general hypotheses.
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Let X be a non-empty convex subset of a topological vector space

E and let f : X ! R. We say that f is quasi-concave if for each

t 2 R; fx 2 X j f(x) � tg is convex; and that f is quasi-convex if

�f is quasi-concave. A correspondence T : X ! 2Y is said to be

upper semicontinuous if for each x 2 X and each open set V in Y

with T (x) � V , there exists an open neighborhood U of x in X such

that T (y) � V for each y 2 U ; and a correspondence T : X ! 2Y

is said to be lower semicontinuous if for each x 2 X and each open

set V in Y with T (x) \ V 6= ;, there exists an open neighborhood

U of x in X such that T (y) \ V 6= ; for each y 2 U . And we say

that T is continuous if T is both upper semicontinuous and lower

semicontinuous.

Next we recall the continuity de�nitions of the real-valued function.

Let X be a non-empty subset of a topological space E and f : X ! R.

We say that f is upper semicontinuous if for each t 2 R; fx 2

X j f(x) � tg is closed in X, and f is lower semicontinuous if �f

is upper semicontinuous. And we say that f is continuous if f is

both upper semicontinuous and lower semicontinuous. For the other

standard notations and terminologies, we shall refer to [10, 11].

First, we shall introduce the generalized multiobjective game (or

generalized game with multicriterior) in its strategic form of a �nite (or

in�nite) number of players G := (Xi; F
i; Ti)i2I , where I is a (possibly

uncountable) set of players, as follows : for each i 2 I; Xi is the set

of strategies in a Hausdor� topological vector space Ei for the player

i, and F i : X = �i2IXi ! R
ki , where ki 2 N , which is called the

payo� function (or called multicriteria) and Ti : X ! 2Xi , which is

called the constraint correspondence of the player i.

If an action x := (x1; � � � ; xn) 2 X is played, each player i is trying

to �nd his/her payo� function F i(x) := (f i1(x); � � � ; f
i
ki
(x)), which
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consists of noncommensurable outcomes under the possible constraint

sets Ti(x). In a generalized multiobjective game, the other players can

in
uence the player j

(1) indirectly, by restricting j's feasible strategies to Tj(x);

(2) directly, by a�ecting j's payo� function F j .

Here we assume that the model of a game is a non-cooperative

game, i.e., there is no replay communicating between players, and so

players act as free agents, and each play is trying to minimize his/her

own payo� according to his/her preferences and constraints.

For the games with vector payo� functions (or multicriteria), it is

well-known that in general, there does not exist a strategy x̂ 2 X to

minimize (or equivalently to say, maximize) all f ijs for each player i in

his/her constraint, e.g., see [11] and the references therein. Hence we

shall need some solution concepts for generalized multicriteria games.

Throughout this paper, for each m 2 N , we shall denote by Rm+ the

non-negative orthant of Rm , i.e.,

R
m
+ := fu = (u1; � � � ; um) 2 R

m
j uj � 0 8j = 1; � � � ;mg;

so that the non-negative orthant Rm+ of Rm has a non-empty interior

with the topology induced in terms of convergence of vectors respect

to the Euclidean metric. That is, we shall use the notation

int Rm+ := fu = (u1; � � � ; um) 2 R
m
j uj > 0 8j = 1; � � � ;mg:

For each i 2 I, denote Xî := �j2InfigXj . If x = (x1; � � � ; xn) 2 X,

we shall write xî = (x1; � � � ; xi�1; xi+1; � � � ; xn) 2 Xî. If xi 2 Xi and

xî 2 Xî, we shall use the notation

(xî; xi) := (x1; � � � ; xi�1; xi; xi+1; � � � ; xn) = x 2 X:
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For each u; v 2 R
m ; u � v denote the standard Euclidean inner prod-

uct.

Now we introduce the following general equilibrium concept of a

generalized multiobjective game :

De�nition. A strategy �x = (�x1; � � � ; �xn) 2 X is said to be a

generalized weight Nash equilibrium for the game G = (Xi; F
i; Ti)i2I

respect to the weight vectorW := (W1; � � � ;Wn) whereWi 2 R
ki
+ nf0g,

if for each player i 2 I,

(1) �xi 2 Ti(�x) ;

(2) Wi � F
i(�xî; �xi) �Wi � F

i(�xî; xi) for each xi 2 Ti(�x).

In particular, when Wi 2 T
ki
+ for all i 2 I, the strategy �x 2 X is

said to be a normalized form of generalized weight Nash equilibrium

respect to the weight W , where T ki
+ is the standard simplex of Rki .

The above de�nition generalizes the corresponding de�nitions in

[9, 10]. In fact, in the above de�nition, it is clear that every general-

ized weight Nash equilibrium is a weight Nash equilibrium when the

constraint set is �xed with Ti(x) = Xi for each x 2 X and i 2 I.

For each i 2 I, let Wi 2 R
ki
+ n f0g be �xed. Then, from the above

de�nition, it is easy to see that a strategy �x 2 X is a generalized

weight Nash equilibrium of a game G = (Xi; F
i; Ti)i2I respect to the

weight vector W = (W1; � � � ;Wn) if and only if for each i 2 I; �xî is

an optimal solution of the vector optimization problem

min
xi2Ti(�x)

Wi � F
i(�xî; xi):

The following lemma is an easy consequence of the quasi-variational

inequality due to Yuan [11], and it is the basic tool for proving the

existence of generalized weight Nash equilibria :
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Lemma 1. Let X be a non-empty compact convex subset of a

Hausdor� topological vector space E which has su�ciently many con-

tinuous linear functionals. Let T : X ! 2X be an upper semicontinu-

ous correspondence such that each T (x) is a non-empty closed convex

subset of X. Let � : X �X ! R be a function such that

(1) for each �xed y 2 X; x 7! �(x; y) is lower semicontinuous ;

(2) for each �xed x 2 X; y 7! �(x; y) is quasi-concave ;

(3) the set f x 2 X j supy2T (x) �(x; y) � 0 g is closed in X.

Then there exists a point x̂ 2 X such that

x̂ 2 T (x̂) and sup
y2T (x̂)

�(x̂; y) � 0:

We also need the following lower semicontinuity property :

Lemma 2. Let X;Y be Hausdor� topological vector spaces and

X be compact. Let T : X ! 2Y be a lower semicontinuous corre-

spondence such that each T (x) is a non-empty subset of X, and let

f : X � Y ! R be a lower semicontinuous function on X � Y . Then

the function � : X ! R, de�ned by

�(x) := sup
y2T (x)

f(x; y); for each x 2 X;

is a lower semicontinuous function on X.

Proof. By applying Theorem 2.5.2 in [1] to �f , we can obtain the

conclusion. � �

Now we will prove an existence theorem of a generalized weight

Nash equilibrium as follows :

Theorem. Let I be a set of �nite number of players and let

G = (Xi; F
i; Ti)i2I be a generalized multiobjective game, where for
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each i 2 I; Xi is a non-empty compact convex subset of a Hausdor�

topological vector space Ei which has su�ciently many continuous

linear functionals. Let Ti : X ! 2Xi be a continuous constraint

correspondence such that each Ti(x) is a non-empty closed convex

subset of Xi. If there exists a weight vector W = (W1; � � � ;Wn) with

Wi 2 R
ki
+ n f0g such that for each i 2 I,

(1) for each yi 2 Xi; x 7!
P

i2I Wi � F
i(xî; yi) is upper semicon-

tinuous on X ;

(2) for each xî 2 Xî; y 7!
P

i2I Wi � F
i(xî; yi) is quasi-convex on

X ;

(3) (x; y) 7!
P

i2I Wi �F
i(xî; yi) is jointly lower semicontinuous on

X �X.

Then there exists a generalized weight Nash equilibrium �x 2 X for

the game G respect to the weight vector W = (W1; � � � ;Wn).

Proof. In order to apply the quasi-variational inequality, we �rst

de�ne a real-valued function � : X �X ! R by

�(x; y) :=
X

i2I

Wi �(F
i(xî; xi)�F

i(xî; yi)); for each (x; y) 2 X�X:

Then by the assumptions (1) and (2) and the fact that �nite sum of

lower semicontinuous functions is also lower semicontinuous, we can

have

(a) for each �xed y 2 X; x 7! �(x; y) is lower semicontinuous ;

(b) for each �xed x 2 X; y 7! �(x; y) is quasi-concave.

Since the correspondence T (x) := �i2ITi(x) is lower semicontinu-

ous and the map � is jointly lower semicontinuous, by Lemma 2, the

map x 7! supy2T (x) �(x; y) is lower semicontinuous and hence the set

f x 2 X j supy2T (x) �(x; y) � 0 g is closed in X. Therefore the

whole assumptions of Lemma 1 are satis�ed, and so there exists a

point �x 2 X such that �x 2 T (�x) and �(�x; y) =
P

i2I Wi � (F
i(�xî; �xi)�
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F i(�xî; yi)) � 0 for all y 2 T (�x). Then for each i 2 I and every

(x̂î; yi) 2 T (�xî; �xi), we have Wi �F
i(�xî; �xi)�Wi �F

i(�xî; yi) � 0 ; which

implies that for each i 2 I; �xi 2 Ti(�x) and

Wi � F
i(�xî; �xi) = min

yi2Ti(�x)
Wi � F

i(�xî; yi):

Thus �x is a generalized weight Nash equilibrium point of the game G

respect to the weight vector W . � �

Remarks. (1) Our Theorem generalizes the corresponding results

in [9, 10]. In fact, when the constraint correspondence Ti is constant,

i.e., Ti(x) = Xi for each i 2 I and x 2 X, our Theorem reduces to the

corresponding Theorem 1 in [10], and so the corresponding theorems

in [9] can be obtained.

(2) We can obtain the existence of equilibria for generalized mul-

tiobjective games by using some coercive conditions as in [6]; and in

this case, we can assure that the strategy set Xi need not be compact

as in the corresponding theorems in [10] nor Xi need be a subset of a

normed linear spaces as in [9].

(3) By following the methods in [6], as applications of general-

ized weight Nash equilibria, we can prove the existence of generalized

Pareto equilibria in non-compact generalized multiobjective games.

�

One �nal comment. It is well-known that �xed point technique has

wide applications in the study of economics and optimizations, e.g.,

see [7-11]. On the other hand, in a recent paper [10], Yu and Yuan

proved the existence of weight Nash equilibria and Pareto equilibria by

using Ky Fan's minimax inequality, which would not be widely used

before as an e�cient tool for investigating the equilibria in economics

and optimizations. Furthermore, in this paper, it is our main purpose
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to present how the quasi-variational inequality can be applied to the

existence of generalized weight Nash equilibria, and this method can

be considered as an e�cient tool for the equilibrium theory.
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