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WEIGHT NASH EQUILIBRIA FOR
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WonN Kyu Kim

ABSTRACT. The purpose of this paper is to give a new existence
theorem of a generalized weight Nash equilibrium for generalized
multiobjective games by using the quasi-variational inequality due
to Yuan.

Recently the study of existence of weight Nash equilibria in game
theory with vector payoffs has been extensively studied by a number
of authors, e.g., see [2-4, 7-11] and the references therein. The mo-
tivation for the study of multicriteria models can be found in [2, 7]
and the existence of Nash equilibria is one of the fundamental prob-
lem in the game theory. In a recent paper [10], Yu and Yuan proved
some existence theorems of weight Nash equilibria by using Ky Fan’s
minimax inequality; and hence they provided an unified study for the
existences of Pareto equilibria and Nash equilibria in multiobjective
game under weaker conditions.

In this paper, we first introduce the new concepts of generalized
multiobjective game and generalized weight Nash equilibrium. Next
using the quasi-variational inequlity due to Yuan [11], we will prove
the existence theorem of generalized weight Nash equilibria under

general hypotheses.
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Let X be a non-empty convex subset of a topological vector space
FE and let f : X — R. We say that f is quasi-concave if for each
teR {ze€ X | f(x)>t}is convex; and that f is quasi-conver if
—f is quasi-concave. A correspondence T : X — 2Y is said to be
upper semicontinuous if for each z € X and each open set V in Y
with T'(z) C V, there exists an open neighborhood U of z in X such
that T(y) C V for each y € U; and a correspondence T : X — 2V
is said to be lower semicontinuous if for each z € X and each open
set V in Y with T'(z) NV # (), there exists an open neighborhood
U of z in X such that T(y) NV # 0 for each y € U. And we say
that T is continuous if T is both upper semicontinuous and lower

semicontinuous.

Next we recall the continuity definitions of the real-valued function.
Let X be a non-empty subset of a topological space E and f : X — R.
We say that f is upper semicontinuous if for each t € R, {x €
X | f(z) > t} is closed in X, and f is lower semicontinuous if — f
is upper semicontinuous. And we say that f is continuous if f is
both upper semicontinuous and lower semicontinuous. For the other

standard notations and terminologies, we shall refer to [10, 11].

First, we shall introduce the generalized multiobjective game (or
generalized game with multicriterior) in its strategic form of a finite (or
infinite) number of players G := (X;, F*, T});c1, where I is a (possibly
uncountable) set of players, as follows : for each i € I, X; is the set
of strategies in a Hausdorff topological vector space FE; for the player
i, and F* : X = IL;c;X; — RF, where k; € N, which is called the
payoff function (or called multicriteria) and T; : X — 2%i, which is
called the constraint correspondence of the player 1.

If an action z := (x1,- - ,x,) € X is played, each player i is trying
to find his/her payoff function F*(x) := (f{(z),---, f{ (z)), which
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consists of noncommensurable outcomes under the possible constraint
sets T;(z). In a generalized multiobjective game, the other players can
influence the player j

(1) indirectly, by restricting j’s feasible strategies to T;(z);

(2) directly, by affecting j’s payoff function F7.

Here we assume that the model of a game is a non-cooperative
game, i.e., there is no replay communicating between players, and so
players act as free agents, and each play is trying to minimize his/her
own payoff according to his/her preferences and constraints.

For the games with vector payoff functions (or multicriteria), it is
well-known that in general, there does not exist a strategy £ € X to
minimize (or equivalently to say, maximize) all f;s for each player i in
his/her constraint, e.g., see [11] and the references therein. Hence we
shall need some solution concepts for generalized multicriteria games.

Throughout this paper, for each m € N, we shall denote by R* the

non-negative orthant of R, i.e.,
RY :={u=(u1, - ,um) ER™ |u; >0 Vj=1,--- ,m},

so that the non-negative orthant R of R™ has a non-empty interior
with the topology induced in terms of convergence of vectors respect

to the Fuclidean metric. That is, we shall use the notation
int RY :={u = (uy,- ,um) ER™ |u; >0 Vj=1,--- ,m}.
For each i € I, denote X; := Il;en 3 X;. If o= (z1,--- ,2,) € X,
we shall write z; = (21, -+, %i—1, Tit1, - ,Tn) € X;. If 2; € X; and

z; € X;, we shall use the notation

(ﬂ%ﬂfi) = (3317"' y Xi—1,Liy Tit1," " " 733n) =z e X.
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For each u, v € R™, wu-v denote the standard Euclidean inner prod-

uct.

Now we introduce the following general equilibrium concept of a

generalized multiobjective game :

Definition. A strategy z = (Z1,---,%,) € X is said to be a
generalized weight Nash equilibrium for the game G = (X;, F*, T})icr
respect to the weight vector W := (W7, -+, W,,) where W; € Rﬁ" \{0},
if for each player ¢ € I,

(1) z; € T3(2) ;

(2) W, - F{(z;,2;) < W; - F'(z;, x;) for each z; € T;(z).

In particular, when W, € Tf" for all 7+ € I, the strategy z € X is
said to be a normalized form of generalized weight Nash equilibrium

respect to the weight W, where T J’ﬁ is the standard simplex of R¥: .

The above definition generalizes the corresponding definitions in
[9, 10]. In fact, in the above definition, it is clear that every general-
ized weight Nash equilibrium is a weight Nash equilibrium when the
constraint set is fixed with T;(z) = X; for each z € X and i € I.

For each ¢ € I, let W; € Rﬁi \ {0} be fixed. Then, from the above
definition, it is easy to see that a strategy & € X is a generalized
weight Nash equilibrium of a game G = (X;, F**, T});c1 respect to the
weight vector W = (Wy,---,W,,) if and only if for each i € I, z; is
an optimal solution of the vector optimization problem

min_ W, - F'(z;, ;).

The following lemma is an easy consequence of the quasi-variational

inequality due to Yuan [11], and it is the basic tool for proving the

existence of generalized weight Nash equilibria :
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LEmMA 1. Let X be a non-empty compact convex subset of a
Hausdorff topological vector space E which has sufficiently many con-
tinuous linear functionals. Let T : X — 2% be an upper semicontinu-
ous correspondence such that each T'(x) is a non-empty closed convex
subset of X. Let ¢ : X x X — R be a function such that

(1) for each fixed y € X, x> ¢(x,y) is lower semicontinuous ;

(2) for each fixed z € X, y+— ¢(zx,y) is quasi-concave ;

(3) the set { x € X | sup,ep(y) ¢(w,y) <0} is closed in X.

Then there exists a point & € X such that

ze€T(x) and sup ¢(z,y) < 0.
yeT ()

We also need the following lower semicontinuity property :

LEmMA 2. Let X,Y be Hausdorft topological vector spaces and
X be compact. Let T : X — 2Y be a lower semicontinuous corre-
spondence such that each T'(x) is a non-empty subset of X, and let
f: X xY — R be a lower semicontinuous function on X x Y. Then
the function ¢ : X — R, defined by

¢(x) .= sup f(z,y), foreach z € X,
y€T (x)

is a lower semicontinuous function on X.

Proof. By applying Theorem 2.5.2 in [1] to —f, we can obtain the

conclusion. [ O

Now we will prove an existence theorem of a generalized weight

Nash equilibrium as follows :

THEOREM. Let I be a set of finite number of players and let

G = (X;, F*,T;);e1 be a generalized multiobjective game, where for
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each i € I, X, is a non-empty compact convex subset of a Hausdorff
topological vector space FE; which has sufficiently many continuous
linear functionals. Let T; : X — 2%i be a continuous constraint
correspondence such that each T;(x) is a non-empty closed convex
subset of X;. If there exists a weight vector W = (W1, --- ,W,,) with
Wi e Rﬁ" \ {0} such that for each i € I,

(1) for each y; € Xi, x> ;c; Wi+ F'(x;, ;) is upper semicon-
tinuous on X ;

(2) for each z; € X;, y— > .c; Wi F'(x;,y;) is quasi-convex on
X ;

(3) (m,y) — > ;e Wi+ Fi(z;,;) is jointly lower semicontinuous on
X x X.

Then there exists a generalized weight Nash equilibrium & € X for

the game G respect to the weight vector W = (Wy,--- , Wy,).

Proof. In order to apply the quasi-variational inequality, we first

define a real-valued function ¢ : X x X — R by

d(z,y) = ZWZ(Fl(xz,xl)—Fl(xz,yz)), for each (z,y) € X x X.
iel

Then by the assumptions (1) and (2) and the fact that finite sum of
lower semicontinuous functions is also lower semicontinuous, we can
have

(a) for each fixed y € X, z +— ¢(z,y) is lower semicontinuous ;

(b) for each fixed z € X, y — ¢(x,y) is quasi-concave.

Since the correspondence T'(x) := Il;c;T;(z) is lower semicontinu-
ous and the map ¢ is jointly lower semicontinuous, by Lemma 2, the
map & — SUP, e (q) ¢(x,y) is lower semicontinuous and hence the set
{2 € X | supyerm #(z,y) <0} is closed in X. Therefore the
whole assumptions of Lemma 1 are satisfied, and so there exists a
point Z € X such that z € T'(z) and ¢(z,y) = > ;c; Wi+ (F(z;, %) —
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F'(z;,4;)) < 0 for all y € T(z). Then for each i € I and every
(.f];, Yi) € T((Eg, z;), we have W, - Fi(jﬁg, z;)—W;- Fi(jﬁg, ¥i) < 0; which
implies that for each i € I, z; € T;(z) and
Wi F'(%;,%;) = min W; - F'(Z;, y).
yi €Ti(x)
Thus z is a generalized weight Nash equilibrium point of the game G

respect to the weight vector W. [ 0

Remarks. (1) Our Theorem generalizes the corresponding results
in [9, 10]. In fact, when the constraint correspondence T; is constant,
i.e., Tj(x) = X, for each ¢ € I and z € X, our Theorem reduces to the
corresponding Theorem 1 in [10], and so the corresponding theorems
in [9] can be obtained.

(2) We can obtain the existence of equilibria for generalized mul-
tiobjective games by using some coercive conditions as in [6]; and in
this case, we can assure that the strategy set X; need not be compact
as in the corresponding theorems in [10] nor X; need be a subset of a
normed linear spaces as in [9].

(3) By following the methods in [6], as applications of general-
ized weight Nash equilibria, we can prove the existence of generalized

Pareto equilibria in non-compact generalized multiobjective games.
O

One final comment. It is well-known that fixed point technique has
wide applications in the study of economics and optimizations, e.g.,
see [7-11]. On the other hand, in a recent paper [10], Yu and Yuan
proved the existence of weight Nash equilibria and Pareto equilibria by
using Ky Fan’s minimax inequality, which would not be widely used
before as an efficient tool for investigating the equilibria in economics

and optimizations. Furthermore, in this paper, it is our main purpose
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to present how the quasi-variational inequality can be applied to the

existence of generalized weight Nash equilibria, and this method can

b

10.

11.

e considered as an efficient tool for the equilibrium theory.
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