• Title/Summary/Keyword: generalized higher derivation

Search Result 7, Processing Time 0.024 seconds

JORDAN HIGHER DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

  • Vishki, Hamid Reza Ebrahimi;Mirzavaziri, Madjid;Moafian, Fahimeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.247-259
    • /
    • 2016
  • We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher derivations on certain trivial extension algebras which are not higher derivations.

An Improved Dynamic Programming Approach to Economic Power Dispatch with Generator Constraints and Transmission Losses

  • Balamurugan, R.;Subramanian, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.320-330
    • /
    • 2008
  • This paper presents an improved dynamic programming (IDP) approach to solve the economic power dispatch problem including transmission losses in power systems. A detailed mathematical derivation of recursive dynamic programming approach for the economic power dispatch problem with transmission losses is presented. The transmission losses are augmented with the objective function using price factor. The generalized expression for optimal scheduling of thermal generating units derived in this article can be implemented for the solution of the economic power dispatch problem of a large-scale system. Six-unit, fifteen-unit, and forty-unit sample systems with non-linear characteristics of the generator, such as ramp-rate limits and prohibited operating zones are considered to illustrate the effectiveness of the proposed method. The proposed method results have been compared with the results of genetic algorithm and particle swarm optimization methods reported in the literature. Test results show that the proposed IDP approach can obtain a higher quality solution with better performance.

Static analysis of laminated and sandwich composite doubly-curved shallow shells

  • Alankaya, Veysel;Oktem, Ahmet Sinan
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1043-1066
    • /
    • 2016
  • A new analytical solution based on a third order shear deformation theory for the problem of static analysis of cross-ply doubly-curved shells is presented. The boundary-discontinuous generalized double Fourier series method is used to solve highly coupled linear partial differential equations with the mixed type simply supported boundary conditions prescribed on the edges. The complementary boundary constraints are introduced through boundary discontinuities generated by the selected boundary conditions for the derivation of the complementary solution. The numerical accuracy of the solution is compared by studying the comparisons of deflections, stresses and moments of symmetric and anti-symmetric laminated shells with finite element results using commercially available software under uniformly distributed load. Results are in good agreement with finite element counterparts. Additional results of the symmetric and anti-symmetric laminated and sandwich shells under single point load at the center and pressure load, are presented to provide data for the unsolved boundary conditions, benchmark comparisons and verifications.