• Title/Summary/Keyword: generalized canonical correlation

Search Result 14, Processing Time 0.022 seconds

Higher-order solutions for generalized canonical correlation analysis

  • Kang, Hyuncheol
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.305-313
    • /
    • 2019
  • Generalized canonical correlation analysis (GCCA) extends the canonical correlation analysis (CCA) to the case of more than two sets of variables and there have been many studies on how two-set canonical solutions can be generalized. In this paper, we derive certain stationary equations which can lead the higher-order solutions of several GCCA methods and suggest a type of iterative procedure to obtain the canonical coefficients. In addition, with some numerical examples we present the methods for graphical display, which are useful to interpret the GCCA results obtained.

UNIFYING STATIONARY EQUATIONS FOR GENERALIZED CANONICAL CORRELATION ANALYSIS

  • Kang Hyun-Cheol;Kim Kee-Young
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.2
    • /
    • pp.143-156
    • /
    • 2006
  • In the present paper, various solutions for generalized canonical correlation analysis (GCCA) are considered depending on the criteria and constraints. For the comparisons of some characteristics of the solutions, we provide with certain unifying stationary equations which might to also useful to obtain various generalized canonical correlation analysis solutions. In addition, we suggest an approach for the generalized canonical correlation analysis by exploiting the concept of maximum eccentricity originally de-signed to test the internal independence structure. The solutions, including new one, are compared through unifying stationary equations and by using some numerical illustrations. A type of iterative procedure for the GCCA solutions is suggested and some numerical examples are provided to illustrate several GCCA methods.

A Study on the Relationship between Physique, Physical Fitness and Basic Skill Factors of Tennis Players in the Korea Tennis Association Using the Generalized Canonical Correlation Biplot and Procrustes Analysis (일반화 정준상관 행렬도와 프로크러스티즈 분석을 응용한 대한테니스협회 등록 선수의 체격요인, 체력요인 및 기초기술요인에 대한 분석연구)

  • Choi, Tae-Hoon;Choi, Yong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.917-925
    • /
    • 2010
  • The canonical correlation biplot is a 2-dimensional plot for graphically investigating the relationship between two sets of variables and the relationship between observations and variables in the canonical correlation analysis. Recently, Choi and Choi (2008) suggested a method for investigating the relationship between skill and competition score factors of KLPGA players using this biplot. Choi et al. (2010) used this biplot to analyze the player characteristic factors and competitive factors of tennis Grand Slam competition. Moreover, Huh (1999) provided a generalized canonical correlation analysis and biplot for more than three sets of variables. A Procrustes analysis is a useful tool for comparing shapes between configurations. This study will provide a method to investigate the relationship between physique, physical fitness and basic skill factors of tennis players in the Korea Tennis Association using a generalized canonical correlation biplot and Procrustes analysis.

Partial Canonical Correlation Biplot (편정준상관 행렬도)

  • Yeom, Ah-Rim;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.559-566
    • /
    • 2011
  • Biplot is a useful graphical method to explore simultaneously rows and columns of two-way data matrix. In particular, canonical correlation biplot is a method for investigating two sets of variables and observations in canonical correlation analysis graphically. For more than three sets of variables, we can apply the generalized canonical correlation biplot in generalized canonical correlation analysis which is an expansion of the canonical correlation analysis. On the other hand, we consider the set of covariate variables which is affecting the linearly two sets of variables. In this case, if we apply the generalized canonical correlation biplot, we cannot clearly interpret the other two sets of variables due to the effect of the set of covariate variables. Therefor, in this paper, we will apply the partial canonical correlation analysis of Rao (1969) removing the linear effect of the set of covariate variables on two sets of variables. We will suggest the partial canonical correlation biplot for inpreting the partial canonical correlation analysis graphically.

Minimax Eccentricity Estimation for Multiple Set Factor Analysis

  • Hyuncheol Kang;Kim, Keeyoung
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.163-175
    • /
    • 2002
  • An extended version of the minimax eccentricity factor estimation for multiple set case is proposed. In addition, two more simple methods for multiple set factor analysis exploiting the concept of generalized canonical correlation analysis is suggested. Finally, a certain connection between the generalized canonical correlation analysis and the multiple set factor analysis is derived which helps us clarify the relationship.

Multi-block Analysis of Genomic Data Using Generalized Canonical Correlation Analysis

  • Jun, Inyoung;Choi, Wooree;Park, Mira
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.33.1-33.9
    • /
    • 2018
  • Recently, there have been many studies in medicine related to genetic analysis. Many genetic studies have been performed to find genes associated with complex diseases. To find out how genes are related to disease, we need to understand not only the simple relationship of genotypes but also the way they are related to phenotype. Multi-block data, which is a summation form of variable sets, is used for enhancing the analysis of the relationships of different blocks. By identifying relationships through a multi-block data form, we can understand the association between the blocks in comprehending the correlation between them. Several statistical analysis methods have been developed to understand the relationship between multi-block data. In this paper, we will use generalized canonical correlation methodology to analyze multi-block data from the Korean Association Resource project, which has a combination of single nucleotide polymorphism blocks, phenotype blocks, and disease blocks.

Relationship between Physical Fitness and Basic Skill Factors for KTA Players Using the Partial Cannonical Correlation Biplot Removing the Linear Effect of the Set of Covariate Variables and Procrustes Analysis (공변량요인 효과를 제거한 편정준상관 행렬도와 프로크러스티즈 분석을 응용한 남자 테니스선수의 체력요인 및 기초기술요인에 대한 분석연구)

  • Choi, Tae-Hoon;Choi, Yong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 2012
  • The generalized canonical correlation biplot is a 2-dimensional plot to graphically investigate the relationship between more than three sets of variables and the relationship between observations and variables. Recently, Choi and Choi (2010) investigated the relationship physique, physical fitness and basic skill factors of Korea Tennis Association(KTA) players of using this biplot; however we consider the set of covariate variables affecting the linearly on two sets of variables. In this case, if we apply the generalized canonical correlation biplot, we cannot clearly interpret the other two sets of variables due to the effect of the set of covariate variables. Moreover, Yeom and Choi (2011) provided partial canonical correlation analysis that removed the linear effect of the set of covariate variables on two sets of variables. In addition, Procrustes analysis is a useful tool for comparing shape between configurations. In this study, we will investigate the relationship between physical fitness and basic skill factors of KTA players of using a partial canonical correlation biplot and Procrustes analysis. We compare shapes and shape variabilities for the generalized, partial and simple canonical correlation biplots.

Quantification Plots for Several Sets of Variables

  • Park, Mira;Huh, Myung-Hoe
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.589-601
    • /
    • 1996
  • Geometric approach to extend the classical two-set theory of canonical correlation analysis to three or more sets is considered. It provides statistical graphs to represent the data in a low dimensional space. Procedures are developed for computing the canonical variables and the corresponding properties are investigated. The solution is equivalent to that of the usual problem in the case of two sets. Goodness-of-fit of the proposed plots is studied and a numerical example is included.

  • PDF

LEAST SQUARES SOLUTIONS OF THE MATRIX EQUATION AXB = D OVER GENERALIZED REFLEXIVE X

  • Yuan, Yongxin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.471-479
    • /
    • 2008
  • Let $R\;{\in}\;C^{m{\times}m}$ and $S\;{\in}\;C^{n{\times}n}$ be nontrivial unitary involutions, i.e., $R^*\;=\;R\;=\;R^{-1}\;{\neq}\;I_m$ and $S^*\;=\;S\;=\;S^{-1}\;{\neq}\;I_m$. We say that $G\;{\in}\;C^{m{\times}n}$ is a generalized reflexive matrix if RGS = G. The set of all m ${\times}$ n generalized reflexive matrices is denoted by $GRC^{m{\times}n}$. In this paper, an efficient method for the least squares solution $X\;{\in}\;GRC^{m{\times}n}$ of the matrix equation AXB = D with arbitrary coefficient matrices $A\;{\in}\;C^{p{\times}m}$, $B\;{\in}\;C^{n{\times}q}$and the right-hand side $D\;{\in}\;C^{p{\times}q}$ is developed based on the canonical correlation decomposition(CCD) and, an explicit formula for the general solution is presented.

  • PDF

A time delay estimation method using canonical correlation analysis and log-sum regularization (로그-합 규준화와 정준형 상관 분석을 이용한 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Gook;Lee, Seokjin;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative time delay between two or more received signals for the direct signal must be determined. Although the GCC (Generalized Cross-Correlation) method is the most popular technique, an approach based on CCA (Canonical Correlation Analysis) was also proposed for the TDE (Time Delay Estimation). In this paper, we propose a new adaptive algorithm based on CCA in order to utilized the sparsity in the eigenvector of CCA based time delay estimator. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue with log-sum regularization in order to utilize the sparsity in the eigenvector. We have performed simulations for several SNR(signal to noise ratio)s, showing that the new CCA based algorithm can estimate the time delays more accurately than the conventional CCA and GCC based TDE algorithms.