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Abstract

Geometric approach to extend the classical two-set theory of canon-
ical correlation analysis to three or more sets is considered. It provides
statistical graphs to represent the data in a low dimensional space.
Procedures are developed for computing the canonical variables and
the corresponding properties are investigated. The solution is equiva-
lent to that of the usual problem in the case of two sets. Goodness-of-fit
of the proposed plots is studied and a numerical example is included.

Key Words : Generalized canonical correlation analysis; Row quantifi-
cation; Column quantification; Biplot.

1. INTRODUCTION

There are many practical situations to deal with multiple sets of vari-
ables. For example, we may have several sets of comparable form of tests
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which are obtained from a group of students and have to determine the simi-
larity between the sets of tests. Canonical correlation analysis, developed by
Hotelling(1936), is a classical technique for studying the relationship between
two sets of variables. The aim of canonical correlation analysis is to find out
linear combinations that have the maximal correlation. The concepts and
technique of canonical correlation analysis have been extended to the case of
more than two sets of variables. Horst(1961) developed a generalized canon-
ical correlation procedure which maximizes the sum of correlations among
linear composites. Carroll(1968) defined the canonical correlation problem in
terms of finding an auxiliary variables and linear combinations of the vari-
ables, with the aim of maximizing the sum of squared correlations between
them. Kettenring(1971) constructed the general principal component model
and provided a unifying discussion of the several extensions of the classical
two-set theory. Discussions to generalized canonical correlation procedure
have been continued by Gower(1989) and Lafosse(1989).

In spite of its long history, canonical correlation analysis has yielded few
useful applications. One major reason may be its difficulty in terms of in-
terpretation. Most of research concentrated on the theoretical approach, and
the main purpose was the description of the association measure rather than
individual scaling of variables and /or subjects. In this article, we will consider
the quantification problem of the rows(observations) and columns(variables)
when we have several sets of variables.

Quantification methods are data-analytic methods, which have been widely
used in Japan for more than thirty years, as descriptive methods to analyze
qualitative data (Tanaka et al., 1994). Their essential parts were established
by C. Hayashi since 1948 (see Hayashi, 1988). These methods could be ex-
panded to continuous variables, though they were originally developed to as-
sign numerical values or scores to qualitative data. In this case, we will assign
appropriate scores to observations and variables so that the specific purpose
of an analysis is achieved. In this point of view, we will study the geometric
approach to quantification for generalized canonical correlation analysis and
propose the statistical graphs to represent the data. It can be regarded as an
extension of Gabriel’s(1971) biplot, a graphical tool for the case of only one
set of variables, to the case of several sets of variables.

2. GEOMETRIC APPROACH TO QUANTIFICATION

Let the data matrix X with n observations(rows) and p variables (columns)
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be partitioned with nxp; submatrices X; ,: =1, -+, m, (pi+py+- - +pm = p).
Thus X = [X1|X3] - |X,x] : n X p. We assume that columns are centered and
standardized unless mentioned otherwise, and that rank(X;) = p;.

The columns of X can be positioned as p points in the Euclidean space
R™. Let S; be the linear subspace of R™ that are generated by columns of X;.
Hence, S; consists of vectors of the form X;aq; for a; € RP:.

Now, the generalized canonical analysis can be presented as a problem of

finding a; s in their respective subspaces so that m points Xjaq, -, Xmam
are closely located as nearest as possible. It can be formulated as
m m
min Y Y [|Xza; — Xja|%. (2.1)
i=1 j=1

where ||C||? is defined as tr(C’C) for an arbitrary matrix C'. Since the above
quantity comes to zero by taking a's equal to zero, we need some constraint
to construct a valid optimization problem.

Note that (2.1) can be rewritten as

27TL( E CLZ-XZ{X,'CLZ') -2 E E CLZ»X{‘X]‘CL]'. (22)
=1 =1 3=1
I#

The criterion can be obtained by fixing the first term while maximizing the
second term of (2.2) rather than taking the overall minimum of (2.1). The
problem, therefore, is to choose a; s so as to maximize

moom

1 Xall* =33 ailX{X,a, (2.3)
i=1j=1
under the constraint
> di X! X;a; = c (constant), (2.4)
=1
where a’ = [a}]---|a],]. Essentially, this optimization problem is not affected

by the values of c.
Now, we can solve this problem using Lagrange multiplier A. Define

L= Z a; X! X;a; — /\(Z a; X X;a; — c)
=1 j=1 =1
Setting the partial derivatives equal to zero yields the following system of
equations:

X! XD = XX/ X,q; (2.5)
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where
XO = [X3]Xo] - [ X Xea| -+ | Xom] 10 % (p = pi),
a = [ay]ag| - - fai_t]ai] - an) 2 1 % (p — py).

By adding X;X;a; to both sides of (2.5), we have
X'Xa=(1+\)Da (2.6)

where a is p x 1 coefficient vector and D is a block diagonal matrix with X! X;
as its ¢-th block. Pre-multiplying D~'/2 to both sides of (2.6) yields

D7VXX'X)D~V2DV?q = (1 4+ \)DV2a. (2.7)

Thus D'/?a/\/c is an eigenvector of D~Y/2(X’'X)D~1/2. For convenience, we
may set ¢ equal to m(n — 1). Premultiplying a} and summing over 7 to both
sides of (2.5), we obtain

A= % ZCO’U(X{G,‘, Z X]‘aj).
i=1 7=1

J#

It means that X is an average of the covariances between the i-th canonical
variate X;a; and the remaining canonical variates. Since A is expressed in
covariance terms, it is not enough to measure the degree of association. We
may use average correlations between m sets canonical variables. Let us define

it as follows

p=>Y_> Corr(Xa;, Xja;)/m(m — 1).
=1 j=1
#i

[

Now, consider the quantification problem of the rows(observations). The
main philosophy is to assign scores to individual observations of one set using
information from remaining m — 1 sets. Note that (2.5) may be written as

a; = (I/ )X X)X X0,
By pre-multiplying A X; to both sides , we obtain
AXa; = X;(X!IX)TTXIX D),

It tells us that X;a; (up to the scale factor A ) is a projection of X@a() on S;.
In other words, the linear combination of m — 1 sets of variables X®a® has
a projection X;a; on the subspace S; generated by the columns of X;. And,
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thus, A X;a; contains quantification of rows belonging to the X; matrix, with
external reference to the prespecified scaling vector X (Ja(®

To quantify the columns(variables) of the data matrix, consider a supple-
mentary problem which is originally introduced by French researchers such
as Lebart(1984). In this case, we consider the artificial supplementary data
Xs, = I, for the i-th set of variables. The elements of the s-th row of Xg,
are zeros except for the s-th element, which is 1. Since all the variables are
centered and standardized, the s-th supplementary observation represents the
single role of the s-th variable in the X, dataset. Therefore, quantification of
the columns of X; is given by AXg, a; or Aa;.

This unidimensional quantification procedure can be extended to multi-
dimensional quantification. Consider the problem of obtaining higher-stage
canonical variables. To assure a new relationship among sets, it is necessary
to add restrictions at each stage. We consider the following restriction at the
k-th stage:

ZCOU(X,'ai(l),Xiai(k)) = ail)Da(k)/(n - 1) - O, [ = l, Tty k—1. (28)

i=1

where a;x) is the k-th stage canonical coefficients vector for the i-th set of
variables and a(x) = (ayk), -, @ik), -, mx)) - Then the coeflicient vector
aq) can be attained from eigenvectors of D™Y/2X'X D~1/? corresponding to
the k-th largest eigenvalue. It follows that the restriction (2.8) yields

COD(XG(]),Xa(k) ZZG XX(Z )/(n—l):(), l:l,"',k—l.

It means that the k-th stage canonical score, Xa,y , is uncorrelated with the
lower-stage canonical score, Xagy,(I=1,---,k—1).

From the above results, the solution for the r-dimensional quantification
can be attained from eigensystem (2.7) relative to the largest r eigenval-
ues. Table 1 summarizes r-dimensional quantification formulas for rows and
columns where

Aitry = (ai2.1), s @iry)  and Ay = diag(Ar, A, -, Ar)

for r < q(= man(p1,p2,- -+, pm)). The r-dimensional quantification plots can
be obtained by plotting the first r columns of X;A;;A(;y for row plot and
AiryA(ry for column plot, and we get the biplot of generalized canonical cor-
relation analysis by combining row and column plots in each set.
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Table 1 Quantification Formulas for Data matrix X;

Rows X,-AZ-(T)A(T)
Columns | AiA(r)

3. PROPERTIES OF QUANTIFICATION METHOD

By considering the geometric meaning of the similarity, we maximized
the sum of covariances between linear composites fixing the sum of variances,
consequently. The properties of the canonical variables can be summarized
as follows : for k,[=1,--- ,mun(p:), k # 1,

E Var(Xiai(k)) =1m,

=1

Var(z Xia,-(k)) = m(l + /\k),

=1

Z Cov(Xiai(k), X.iai(,)) = O,

=1

m m
COU(Z Xiai(k), Z Xiai(l)) = 0.
i=1 i=1
Here, a;() 1s the k-th stage canonical coefficient vector for the i-th variable
set and Ay is the average covariance at the k-th stage.

When the number of sets is only two, the proposed method reduces to
Hotelling’s classical procedure. Note that the only difference between above
optimization problem and the standard one is that the latter uses two in-
dividual norming constraints while the former uses a single overall norming
constraint. However, it can be shown that the two multipliers coincide when
m = 2. On the other hand, the additional restriction to obtain higher-stage
canonical variables is also reduced to the standard restriction. See Park(1995)
for proofs. Thus, it follows that, for [=1,--- k — 1,

Cov(Xia;2.1), Xiaia)) =0, 1=1,2,

and
CO'U(X]GI([), Xgag(k)) = 0.



Quantification Plots for Several Sets

Under the nonsingular transformation, average maximum covariance, X ,
between the i-th canonical variable X;a; and the sum of remaining canonical
variables X Wa(® is invariant. In addition, it leads

XT(T 'a) = Xa,

and, moreover,

XiTl'(Tz-—lai) :Xia,i, (ZI 1,...,m)
where T' is p X p block diagonal matrix with its ¢-th block as p; X p; nonsingular
matrix T;. The proof is given in Park(1995). Therefore, quantification results
of the rows are invariant under the nonsingular transformation while those of
columns do not keep this property.

Consider the interpretation of the quantification plots. Note that the
coordinates of row plots and column plots are the canonical scores and co-
efficients scaled by square root of canonical correlation, respectively. Thus
the projected length of each column {row} points along the axis indicates
the importance of the variable {observation} in each set. And, since the
coordinate of row plots are weighted average of the column coordinates, we
can observe the relative position of the individual with respect to the vari-
ables by superimposing the row and column plot for each variable set. Also,
by superimposing the column plots of all sets, we can see what the canoni-
cal relationship means. These properties will be examined in detail with a
numerical example.

Now, we consider the goodness of lower dimensional approximation offered
by quantification plots. For row quantification plot of data matrix X, we may
define a goodness-of-approximation by

GOA(T) f()T' )(i =1- ”XlAlA - Xi(Ai(r)A(r) : 0p.x(q—r))“2/

X AA P
For column quantification plot of data matrix X, we may define

GOAG) for Xi=1— AN = (Ain Ay Opx(a=n)lxix /1A% x,
where [|C]|* is defined as ¢tr(C'C) and ||C]|3; is defined as ¢tr(C’MC). The

reason for using norming matrix X/X, is that column quantifications are
lacking absolute uniqueness under nonsingular transformation of X.

Also, we may define the “explanatory power indices(EPI)” which are sim-
ilar to the coefficient of determination R?* in linear regression:

EPIyy for XU by Xi = || XAy A 1P/ XD AD |12,
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4. A NUMERICAL EXAMPLE

To illustrate the proposed methodology, we use “depression” data from
Afifi(1984). We select seven negative-affect items, four positive-affect items
and seven somatic and retarded activity items. The list of the items is given
in Table 2. Fach item is a statement to which the response categories are
ordinal. The values of the response categories are reversed for the positive-
affect items.

Table 2. List of the Depression Item

Negative Affect

z1. I felt that I could not shake off the blues even with the help
of my family or friends.

z2. I felt depress.

z3. 1 felt lonely.

z4. T had crying spells.

z5. [ felt sad.

z6. 1 felt fearful.

z7. I thought my life had been failure.

Positive Affect

z8. I felt that I was as good as other people.
z9. 1 felt hopeful about future.

210. I was happy.

z11l. 1 enjoyed life.

Somatic and Retarded Activity

z12. I was bothered by things that usually don’t bother me.
z13. 1did not fee] like eating; my appetite was poor.

z14. I felt that everything was an effort.

z15. My sleep was restless.

z16. I could not “get going”.

z17. I had trouble keeping my mind on what I was going.
z18. I talked less than usual.

Table 3 shows the standardized canonical coefficients. We can see these
results more easily from quantification plots. Column plots of the three sets
are given in Figure 1 to Figure 3. Observe that the axis with larger eigenvalues
1s more emphasized in the plot. Here, ¢i(1,2) means the correlation between
the first-order and second-order canonical variables in the i-th set of variables.
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In Figure 1, most of the points are on the right side of the first axis.
Therefore we may interpret this axis as general level of the negative affection.
Whereas, the second axis describes differences in the modes of expressing
negative affection since it i1s weighted difference of crying(z4) and feeling
depression(z2). In Figure 2, all the variables are located on the right side
of the first axis. Thus this axis means a size factor representing the general
level of the positive affection. The second axis is a contrast between hope for
the future (z9) and satisfaction with the past (28, z10 and z11). Thus it can
be regarded as a reason of feeling positive affection. Similarly, from Figure
3, we can interpret that the first axis means general level of the somatic
and retarded activity and the second axis means a expression way of the
retardation.

Consideration of the three sets of column points simultaneously allows us
to interpret the canonical correlation relationship. By superimposing Figure
1 to Figure 3 for the first axis, we can see that the first canonical variates
represent the linear association among the general levels of three affection
types. It means that people with higher depression for one affection type
tends to have higher depression for the other affection types. In a similar
manner, the second canonical variates can be interpreted as the differential
assoclation among three ways of expressing affection. For example, people
who show negative affection by crying(z4) tend to be more pessimistic to the
past (z8,z11) and show extreme retarded activities(z13, z18).

Average correlations(p) and average covariance (\) between three sets of
canonical variables are given in Table 4. Average correlation between the
first-stage canonical variables (p1) is 0.5254. Average correlations between
the second (p2), third (p3) , and fourth (p4) stage are given by 0.3659, 0.1480,
and 0.1057, respectively. The average covariance between canonical variables
has 1.2770 as its maximum, and so on.

The goodness-of-approximation and the explanatory power index for two
dimensional quantification plots are given in Table 5. In each variable set,
the goodness-of approximation for two dimensional plots are 90.7 %, 93.4 %
and 94.1 %, respectively. On the other hand, the explanatory power indices
for two dimensional quantification are given by 29.4 %, 17.9 % and 20.0 %.

It is not necessary to look at all of the individual plot . We can, however,
plot the centroid of various data subsets from demographic variables. Figure
4 is observation(row) plot for the first variable set using employment group
as demographic variables. The five employment groups are m1(full time em-
ployer), m2(part time employer), m3(unemployed person), m4(retired) and
mb(house person). We obtain biplot of the first variable set by superim-
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posing this row plot and the column plot of the first variable set. We can
interpret that m3(unemployed person) and m5(house person) show relatively
large negative affection while m1(full time employer) and m4(retired) show
relatively small negative affection. In the second axis, however, they do not
look so different.

Table 3. Standardized Canonical Coefficients

a1 a2 as a4
zl 0.2399 -0.0045 0.5497 -1.0211
z2 0.4564 -1.2142 -0.2041 0.6074
z3 0.0284 0.4468 0.5719 -0.5738
z4 -0.0627 09701 0.1570 0.1138
x5 0.1972  0.0942 -1.0469 -0.6750
z6 0.1096 0.3084 -0.6645 0.9157
x7 0.3005 -0.1312 0.7083 0.7745
8 0.1043 0.6813 0.3275 0.4867
z9 0.0516 -0.6516 0.7367 0.1860
10 0.6830 0.0263 -0.9086 -0.8541
z11  0.3631 0.3625 0.5456  0.5251
z12 0.2006 0.1486 -0.6183 0.7104
z13 0.0530 0.5171 -0.2012 -0.5262
x14 0.1984 0.3134 -0.3859 0.3672
z15 0.3828 -0.4212 0.3211 -0.1681
x16 0.1736  -0.4913 0.2951 0.0932
x17  0.2335 -0.3973 -0.1077 -0.0322
18 0.3089 0.5538 0.3555 -0.3786

Table 4. Average Correlation and Average Covariance

P p2 p3 P4
0.5254 0.3659 0.1480 0.1057
A1 AZ )‘3 A4

1.2770 0.4218 0.3120 0.2174

Table 5. Goodness-of-Approximation and Explanatory Power Index

GOA(Z) EPI(Z)
X1 90.7% 294 %
X2 934 % 179%
X3 941 % 20.0%
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