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Recently, there have been many studies in medicine related to genetic analysis. Many genetic studies have been performed 
to find genes associated with complex diseases. To find out how genes are related to disease, we need to understand not only 
the simple relationship of genotypes but also the way they are related to phenotype. Multi-block data, which is a summation 
form of variable sets, is used for enhancing the analysis of the relationships of different blocks. By identifying relationships 
through a multi-block data form, we can understand the association between the blocks in comprehending the correlation 
between them. Several statistical analysis methods have been developed to understand the relationship between multi-block 
data. In this paper, we will use generalized canonical correlation methodology to analyze multi-block data from the Korean 
Association Resource project, which has a combination of single nucleotide polymorphism blocks, phenotype blocks, and 
disease blocks.
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Introduction

Human diseases involve complex processes, including the 
interaction between multiple biological layers, including 
genetic, epigenetic, and transcriptional regulation [1]. For 
identifying genes involved in complex human diseases, 
genome-wide association studies (GWASs) are used by 
searching for single-nucleotide polymorphisms (SNPs) that 
occur more frequently in people without the disease. Prior 
GWASs identified SNPs related to several complex diseases, 
such as diabetes, heart abnormalities, and Parkinson disease. 
Researchers hope to find more SNPs associated with chronic 
diseases through GWASs in the future [2]. Most research 
has focused solely on the investigation of a single type of 
genomic data [3].

However, recent advances in genotyping technology have 
resulted in the large-scale generation of genomic data, and 
the variety of information collected has also become very 
diverse. Therefore, it has become very important to apply 
analytical methods that can fully utilize the given information. 

These data need to be analyzed in conjunction with disease 
variables, such as multiple SNPs and phenotypes. However, 
since these variables have different properties from each 
other, multi-block analysis that considers each property is 
necessary. Furthermore, even though these data have the 
potential to reveal great insights into the mechanism of 
disease and to discover novel biomarkers, statistical methods 
for integrative analysis of multi-block data are only emerging 
[4].

If there are only two variable blocks, canonical correlation 
analysis (CCA) can be applied. Research continues to try to 
analyze DNA-related data based on canonical analysis. Briki 
and Genest [5] adopted a canonical analysis approach to 
investigate correlated motions of atoms by molecular 
dynamics simulation. However, since there are more than 
two blocks in reality, the extended CCA methods that are 
applicable to more than two blocks have been less studied.

Hence, research has recently started to shift toward 
approaches using systematical models in order to integrate 
and analyze heterogeneous data comprehensively rather 
than through simple step-wise processes. Among multi-block 
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Fig. 1. Construction of multi-block 
dataset.

analysis methods, generalized canonical correlation analysis 
(GCCA) is one of the most representative methods. 
Nevertheless, many studies have not yet been conducted on 
the application of multi-block methods to genomic data. 
Therefore, in the present study, we adopt GCCA to figure out 
the associations between SNP block, phenotype block, and 
disease block. We applied Korean Association Resource 
(KARE) data and analyzed the possibility and limitations of 
multi-block analysis methods for genomic data.

Methods
Multi-block dataset

We focused on analyzing a multi-block dataset, considering 
the characteristics of each block. The multi-block dataset is 
a data type of horizontally concatenating more than two 
variable blocks. Usually, each block has different properties 
and forms and can also be partitioned by prior knowledge, 
but all blocks have the same number of observations. 
Suppose there are K blocks, and each block has pk number of 
variables (k = 1, ⋯, K). We can express the k-th block Xk as 
Xk = [x1, ⋯, xpk]. The total dataset X can be presented as [X1, ⋯,  
Xk, ⋯, XK].

As technology advances, this type of data is common in a 
variety of studies. For instance, in food science, blocks of 
variables could be physico-chemical measurements, sensory 
analysis data, and instrumental measurements [6]. 
Multiomics, the typical multi-block dataset in the medical 
field, means a new biological analysis approach where the 
datasets are multiple omics, such as the genome, proteome, 
transcriptome, epigenome, and microbiome [7-9]. It usually 
focuses on associations between SNPs and traits, considering 
varying phenotypes.

Generalized canonical correlation analysis 

Among various methods of dealing with a multi-block 
dataset, GCCA is used in this paper. Since it is extended from 
CCA, we start with an explanation of CCA. CCA is a method 
of inferring information from cross-covariance matrices. If 

there are two vectors X = (x1, ⋯, xn) and Y = (y1, ⋯, ym) of 
random variables and if there are correlations among the 
variables, the linear combinations of xi and yj to maximize 
the correlation with each other—termed canonical variables—
are found through CCA [10].

GCCA is a way of extending CCA to adapt to more than 
two sets of random variables after removing dependencies 
within each set. The basic structure of CCA is to derive a new 
linear combination of the variables, called canonical 
variables, constituting each set and to estimate the 
correlation between canonical variables. In other words, 
canonical variables summarize the information inherent to 
the abbreviated set of multivariate data [11]. GCCA can be 
divided into two methods: using correlations and using 
covariance. In our paper, we use a method of analysis based 
on covariance. GCCA based on covariance uses the variance 
of ‘block scores’ to compute the residual matrices. For 
instance, in an Xk  variable block, we can denote ak = (ak1 ak2 ⋯ 
akpk)′ as the coefficients for each variable in Xk block. 
Therefore, the canonical variables, yk (k = 1, ⋯, K), are 
expressed as: 

y1 = X1 a1 = a11 X11  ＋ ⋯＋ a1p1 
X1p1 

⋮
yK = XK aK = aK1 XK1 ＋⋯＋ aKpK

 XKpK
 

 The optimization problem is as follows.


 ⋯ 

    
≠





The optimization problem tries to find coefficients of each 
block a1, a2, ⋯, aK that would maximize the weighted 
summation of the covariance of the two components. The cij 
in the equation implies the relationship between variable 
block Xi and Xj. If they have a relationship, we could assign 
cij = 1; otherwise, we could assign cij = 0. The function g() 
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Table 1. Disease frequency according to group

Group 1 Group 2 Group 3 Group 4

Yes No Yes No Yes No Yes No

Diabetes 119 (6.9) 1,594 (93.1) 151 (10.2) 1,325 (89.8)  74 (3.6) 1,992 (96.4) 206 (9.7) 1,928 (90.3)
Hyper 217 (12.7) 1,496 (87.3) 341 (23.1) 1,135 (76.9) 152 (7.4) 1,914 (92.6) 568 (26.6) 1,566 (73.4)
Total 1,713 1,476 2,066 2,134

Values are presented as number (%).

Fig. 2. How to extract 35 single nucleotide polymorphism (SNP)
variables. KARE, Korean Association Resource.

can be various functions, such as horst (g(x) = x), centroid 
(g(x) = |x|), and factorial (g(x) = x2). Among these 
methods, we applied horst methods. A design matrix C = 
(cjk) is pre-specified by the user to express the relationships 
between blocks. The element cjk is equal to 1 if block j and 
block k are connected and 0 otherwise [12, 13].

Data description: KARE

In this paper, we use data from the KARE project, which 
was initiated in 2007 to undertake a large-scale genome- 
wide association analysis among the 10,038 participants of 
two areas: Anseong and Ansan. It was established as part of 
the Korean Genome Epidemiology study (KoGES) in 2001, 
providing genomic and clinical variables for over 260 traits 
[14]. 

Among the KARE data, we decided to make three different 
variable blocks that included information on SNP variables, 
phenotype variables, and disease variables. Fig. 1 represents 
the multi-block form of the KARE data, which had three 
variable blocks, each with different characteristics. The first 
variable block, X1, is a block of SNP variables; the second 
variable block, X2, is a phenotype block that has five 
phenotype variables related to obesity. The last variable 
block, X3, is a disease block that has information on 
observational status in diabetes and hypertension. 

The first variable block, X1, has information on 35 SNP 

variables, and each piece of data was recorded as 0, 1, or 2 
according to their genotype. We extracted 35 SNP variables 
to be included in our analysis according to the specific 
following steps described in Fig. 2. The original KARE 
dataset has 311,779 variables, and we regarded 324 SNP 
variables as our main interest from the literature of 
Multi-QMDR analysis. The 324 SNP variables showed 
strong marginal effects in the univariate linear regression 
models in the paper [15]. From the 324 selected variables, 
we selected 47 variables that showed a significant 
relationship with our phenotype variables in the phenotype 
block. Lastly, we removed extremely similar SNP variables 
that had a correlation of more than 0.98 with each other in 
order to clearly see the correlation between variables. 

The second variable block, X2, is a block of phenotype 
variables that have been proven to have a relationship with 
obesity. The five phenotype variables–suprailiac skinfold, 
subscapular skinfold, body mass index (BMI), waist-hip 
ratio, and waist–were selected, and all of them are related to 
obesity. The third variable block, X3, is a block of diseases. 
Two disease variables were made from patients’ clinical 
traits. Participants whose “fasting blood glucose” was higher 
than 126, “blood glucose/oral glucose tolerance after 120 
minutes” was higher than 200, or “who had medication of 
diabetes” were considered as having diabetes. Participants 
whose “subscapular skinfold” was over 140, “suprailiac 
skinfold” was over 90, or “who had medication of 
hypertension” were considered as having hypertension. 
Table 1 shows how each group was composed of according to 
our disease definition. Excluding individuals with missing 
values among the variables used in this process, the final 
sample size was 7,389 in the study. 

Sex and age were considered as potential covariates which 
could affect our association analysis; for instance, coronary 
heart disease (CHD) is more common in men than in 
women. In addition, the risk of CHD increases with age in 
both sexes, but the increase is sharper in women [16]. 
Therefore, we divided the 7,389 observations into four 
groups based on a median age of 50 years and sex. Group 1 
represents below the median age and males, while group 2 
represents above the median age and males. Groups 3 and 4 
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Table 2. Simple logistic regression coefficients for diseases

Block Dependent variable
Diabetes Hypertension

Estimate Pr (＞|t|) Estimate Pr (＞|t|)

Phenotype Suprailiac skinfold 0.021 ＜0.001 0.012 0.004
Subscapular skinfold 0.020 ＜0.001 0.002 0.578
BMI 0.026 ＜0.001 0.045 ＜0.001
Waist-hip ratio 0.032 ＜0.001 0.070 ＜0.001
Waist 0.033 ＜0.001 0.064 ＜0.001

Genotype (SNP) rs221097 0.011 0.511 −0.055 0.015
rs7583940 0.014 0.105 −0.002 0.858
rs3103261 0.005 0.723 −0.015 0.486
rs3856726 −0.045 0.025 0.02 0.489
rs1849809 −0.003 0.546 −0.003 0.672
rs7681841 −0.021 0.293 0.008 0.786
rs17226252 −0.014 0.387 0.009 0.705
rs1570064 −0.007 0.704 −0.006 0.813
rs17168600 −0.013 0.284 0.025 0.141
rs6965746 −0.004 0.347 0.013 0.047
rs1510447 0.000 0.993 −0.005 0.521
rs4472504 −0.01 0.394 0.037 0.031
rs10090537 −0.013 0.535 0.009 0.759
rs4745034 −0.005 0.689 0.024 0.198
rs16906215 −0.001 0.957 0.014 0.479
rs17599042 −0.005 0.652 0.018 0.27
rs17109716 −0.008 0.527 0.005 0.794
rs11876341 0.003 0.631 0.017 0.084
rs601619 0.001 0.942 −0.002 0.953
rs17248901 −0.024 0.059 0.012 0.515
rs6561930 −0.037 0.052 0.024 0.381
rs527248 0.01 0.06 −0.005 0.498
rs11000212 0.001 0.828 0.001 0.923
rs9939609 −0.003 0.639 0.024 0.008
rs10842994 0.002 0.773 0.001 0.853
rs3782889 −0.011 0.045 −0.016 0.039
rs12229654 −0.016 0.009 −0.021 0.013
rs11066280 −0.013 0.019 −0.028 ＜0.001
rs4667458 −0.005 0.571 −0.011 0.418
rs11933222 −0.005 0.223 0.008 0.205
rs17092358 0.011 0.032 0.003 0.635
rs7136259 −0.004 0.341 −0.031 ＜0.001
rs2254613 0.003 0.487 0.028 ＜0.001
rs1378942 −0.011 0.045 −0.037 ＜0.001
rs11131794 0.02 ＜0.001 −0.01 0.174

BMI, body mass index; SNP, single nucleotide polymorphism.

represent females below and above the median age, 
respectively. For each group, our data were composed of 
three different blocks (J = 3)–a gene data block, clinical data 
block, and disease status block. As with many multi-block 
genomic data, KARE data also have very different 
characteristics for each block. The gene data block has 35 
SNP variables that are discrete and can only have values of 0, 
1, or 2. The five phenotype variables of the clinical data block 
were continuous. The disease status block consisted of only 

two dummy variables, indicating the presence or absence of 
disease. 

To check the association between blocks, logistic 
regression analysis was performed, and the coefficients and 
p-values are listed in Table 2. Table 2 shows the simple 
logistic regression of the variables in the phenotype and 
genotype blocks for diabetes and hypertension. 

In Table 2, every variable in the phenotype block was 
statistically significant with diabetes, all with a p-value less 
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Table 3. Correlation between blocks

Groupa Canonical variable SNP–Phenotype SNP–Disease Phenotype–Disease

Group 1 First-first 0.204 0.164 0.180
Second-second 0.281 0.071 0.071

Group 2 First-first 0.194 0.128 0.186
Second-second 0.277 0.085 0.034

Group 3 First-first 0.169 0.102 0.250
Second-second 0.259 0.031 0.032

Group 4 First-first 0.193 0.129 0.188
Second-second 0.192 0.061 0.069

SNP, single nucleotide polymorphism.
aThe groups 1 and 2 represents men group with age below median and age above median, respectively. The groups 3 and 4 represents 
women group with age below median and age above median, respectively.

Table 4. Generalized canonical correlation results

Groupa Canonical variable Generalized 
canonical correlation

Square of generalized 
canonical correlation Proportion

Group 1 1 0.183 0.034 50.2
2 0.156 0.024 36.4
3 0.095 0.009 13.4

Group 2 1 0.171 0.029 46
2 0.151 0.023 35.8
3 0.107 0.012 18.2

Group 3 1 0.178 0.032 52.9
2 0.133 0.018 29.8
3 0.101 0.010 17.3

Group 4 1 0.171 0.029 55.9
2 0.115 0.013 25.2
3 0.099 0.010 18.9

aThe groups 1 and 2 represents men group with age below median and age above median, respectively. The groups 3 and 4 represents 
women group with age below median and age above median, respectively.

than 0.001. However, in the regression with hypertension, 
the subscapular skinfold variable did not satisfy the 
significance level, which turned out to be a p-value of 0.578. 
Other than subscapular skinfold variable, all variables in the 
phenotype block showed significance of a relationship with 
hypertension. Therefore, there exists a relationship between 
each phenotype variable and two diseases, respectively. In 
contrast to the association between phenotype variables and 
disease variables, the association between SNP variables and 
disease variables were revealed only from certain genes. The 
genes related to diabetes were rs3856726, rs3782889, 
rs12229654, rs11066280, rs17092358, rs1378942, and 
rs11131794. The genes related to hypertension were 
rs221097, rs6965746, rs4472504, rs9939609, rs3782889, 
rs12229654, rs11066280, rs7136259, rs2254613, and 
rs1378942. There has been a study of SNPs associated with 
diabetes, in which the MYL2, C12orf51, and OAS1 genes 
were found to be significantly associated with 1-hPG, which 
has been understood as an additional risk factor for type 2 

diabetes. Therefore, genes with rs3782889 (MYL2), 
rs12229654 (MYL2) were proven to have a valid relationship 
with diabetes [17].

Results

The results of the GCCA were analyzed separately 
according to each group. In doing the GCCA, we needed to 
determine how many canonical variables we would have. 
The generalized canonical correlation results are presented 
in Table 3. Group 1 had generalized canonical correlations of 
0.183, 0.156, and 0.095. The square of the generalized 
canonical correlations was 0.034, 0.024, and 0.009. The 
square of the generalized canonical correlation was used for 
calculating what proportion the canonical variable explains 
the dataset. For instance, the first canonical variable in group 
1 had a square of the generalized canonical correlation value 
of 0.034 (rounded number is listed in Table 4). The 
proportion was calculated by using the square of the 
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Fig. 3. Sample plot of group 3.

generalized canonical correlation. The first GCCA canonical 
variable explained 50.2% of the variation, while the second 
and third variables explained 36.4% and 13.4%, respectively. 
Therefore, for group 1, we used two canonical variables that 
were sufficient enough to represent the dataset. The other 
three groups also required two canonical variables to 
represent the dataset. 

Since we have three blocks, we could make three initial 
canonical variables. The SNP block’s first canonical variable 
was U1 = a1SNP1 ＋⋯＋ a35SNP35. The phenotype block’s 
first canonical variable was V1 = b1SUP ＋ b2SUB ＋ b3BMI ＋ 

b4WHR ＋ b5WAIST. The disease block’s first canonical 
variable was W1 = c1Diabete ＋ c2Hyper. The term ai, bi, ci 
represents the coefficient of each i-th variable in the block. 
When we draw the first canonical variables U1 , V1 , W1 and 
the second variables U2, V2, W2, we can interpret the 
relationship of each block’s variable to the other block. In 
this paper, we first explain the relationship between blocks 
and then discuss the relationship within the blocks. 

Between-block relationship

Once we conducted GCCA in SAS/IML, we could get 
information on the canonical variables and coefficients for 
each variable in the block. From the canonical variable value, 
we calculated the correlation between blocks, because the 
first and second canonical variables could represent most of 
the data. Table 3 represents the correlation between each 
block’s canonical variables. With a GCCA containing three 
blocks, the first correlation among three blocks is obviously 
high, but it can be different when we consider two pairs. The 
highest relationship was found in group 1, which had a 
correlation of 0.281 between the SNP block’s second 
canonical variable and the phenotype block’s second 
canonical variable. It is interesting that the relationship 
between the SNP block and phenotype block is the strongest, 
while the relationship between the SNP block and disease 
block is not that noticeable. This would imply a pathway 
relationship from SNP to disease, in which phenotype is the 
medium of the link between them. Another interesting point 

is the relationship between the first canonical variables is not 
that strong in the relationship between SNP and phenotype. 
Except group 4, the other three groups showed a stronger 
correlation between second canonical variables than first 
canonical variables. This is thought to be due to the fact that 
the phenotype spreads in the second axis. 

We also visualized the relation between blocks, 
particularly between the second canonical variables of the 
SNP and phenotype blocks. In Fig. 3, we illustrate a sample 
plot in group 3. The plot explains how the sample 
observation is located in each block by using the first and 
second canonical variable of each block. The SNP block 
appeared to be scattered compared with the other groups. 
The phenotype block’s observations are densely populated 
near the center (0,0), while the disease group’s observations 
only appear at four dots, since they are discrete data that have 
four possible disease cases. We can regard a sample that is 
located farther from center (0,0) is more influential for each 
SNP, phenotype, or disease block.

Within-block relationship

If we looked at each block’s variable plot, we can also 
understand how each variable in the block affects the 
canonical variable. The variable plot demonstrates how the 
variables are positioned within block; therefore, the goal is 
figuring out the internal relationship between variables. The 
x-axis is how much each variable influences the first 
canonical variable, and the y-axis is how much each variable 
influences the second canonical variable. In Fig. 4, there exist 
four variable plots, each representing how the variable in 
each block composes its block. The variables of the SNP 
block were represented as black points, which were 
categorized into seven different groups, based on where it is 
related the most. 

We can interpret variable plots through making criteria for 
the x-axis and y-axis. If a variable exists farther away from the 
origin, the influence would be greater. We will illustrate 
group 1’s case in particular, while the interpretation of the 
other groups could be made, in addition to the first group’s 
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Fig. 4. Variable plot of each group. 
SUP, suprailiac skinfold; SUB, sub-
scapular skinfold; BMI, body mass 
index; WHR, waist-hip ratio; WC, 
waist circumference; HYP, hyperten-
sion; DIA, diabetes.

interpretation. In group 1’s variable plot in Fig. 4, compared 
with the SNP variables, phenotype and disease variables 
showed more distinguishable features. The 35 SNP 
variables, which were presented as seven symbols according 
to their category in the graph, had a similar influence on SNP 
blocks. In the phenotype block, the variable waist-hip ratio 
and BMI had almost the same angle from the origin, whereas 
suprailiac skinfold (Sup) was almost in the opposite location 
in terms of the second components of the phenotype blocks. 
This means that waist-hip ratio and BMI gave similar traits 
compared with other phenotypes. When we considered the 
first-dimension axis, we could observe that subscapular 
skinfold (Sub) had a different trait from the other phenotype 
variables. In terms of disease blocks, we could separate 
people with disease and people without disease in terms of 
the x-axis, and hypertension and diabetes were also 
distinguishable with the y-axis criteria. 

It is interesting for us to compare how the variable plot in 
each group was different. In terms of the SNP variable block, 
the rs527248 SNP variable had a triangular shape, which 
means the SNP is related to BMI the most compared with the 
association with other phenotype variables. Among SNP 
variables, rs527248, a point located outside of small gray 

circle in the first quadrant, had the most powerful influence 
on its canonical variable in all groups. In group 2, the 
influence of the rs527248 variable was more powerful on the 
first axis, whereas for groups 1, 3, and 4, there was much 
influence of the variable on the y-axis.

There are different aspects of the phenotype block’s 
variables from each group. In group 4, there existed extreme 
difference between the phenotype variables waist-hip ratio 
and waist. Whereas the waist-hip ratio variable was more 
than 1 on the y-axis, the waist variable was near ‒1, which is 
exactly the opposite location. If we look at the specific 
coordinates of the waist-hip ratio and waist variables, the 
influence of waist-hip ratio on the y-axis was 1.038, but the 
influence on the x-axis was 0.4966. In contrast, the waist 
variable in group 3 had a stronger influence on the y-axis 
than on the x-axis.

From our simple logistic regression, we had information 
that the SNP variable rs4472504 was related to hypertension 
disease, which had a p-value of 0.031. In our variable plot, 
the coordinates of rs4472504 were (−0.2113, −0.082), 
(−0.0987, 0.3589), (−0.028, 0.1049), and (−0.0995, 
−0.1101) in each group, respectively, whereas the 
coordinates of hypertension were (0.4645, 0.1513), (0.364, 
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0.1043), (0.4955, 0.0146), and (0.5504, −0.0219). Therefore, 
we cannot conclude that the relationship between a single 
SNP and a disease cannot be identical to the power of its 
influence on each axis. 

Discussion

In this paper, we have reviewed how to analyze 
multi-block datasets—in particular, using Korean 
genomewide data: the KARE dataset. We conducted GCCA 
in order to compare the relationship between and within 
multi-blocks. To see the relationship between variables, we 
used SAS [18] to do GCCA and R to visualize the 
relationships between and within multi-block data in four 
different subgroups: group 1, group 2, group 3, and group 4. 
In the relationship between blocks, we could reveal that 
there existed a stronger association between second 
canonical variables than between first canonical variables. In 
addition, we found that the relationship between SNP block 
and Phenotype block was the strongest, whereas the 
relationship between SNP block and Disease block was not 
remarkable. To see the relationship within variables, we 
made plots that showed how much each variable contributed 
to the canonical variable. Some SNP variables showed 
distinguishable influence among variable blocks, but most 
SNP variables did not show big difference. Phenotype 
variables, however, were distinguished by each group and 
showed dramatic differences between groups. In this paper, 
GCCA was applied to the preselected SNP set which relied 
on previous literatures, however, further research could be 
started from screening SNPs which are associated with 
phenotype or disease status.

We had limitations, in that different types of data, 
including both discrete and continuous data, can lead to 
unsuccessful results in GCCA. However, the analysis 
regarding SNP, phenotype, and disease at the same time 
would be meaningful itself and can even be more productive 
when we add pathway assumption in the association 
analysis. Therefore, further research of this topic should 
focus on robust generalized canonical correlation analysis, 
which could function regardless of datatype, and on the 
relationship that we would like to specify. 
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