• Title/Summary/Keyword: generalized Ricci soliton

검색결과 13건 처리시간 0.024초

CERTAIN RESULTS ON CONTACT METRIC GENERALIZED (κ, µ)-SPACE FORMS

  • Huchchappa, Aruna Kumara;Naik, Devaraja Mallesha;Venkatesha, Venkatesha
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1315-1328
    • /
    • 2019
  • The object of the present paper is to study ${\eta}$-recurrent ${\ast}$-Ricci tensor, ${\ast}$-Ricci semisymmetric and globally ${\varphi}-{\ast}$-Ricci symmetric contact metric generalized (${\kappa}$, ${\mu}$)-space form. Besides these, ${\ast}$-Ricci soliton and gradient ${\ast}$-Ricci soliton in contact metric generalized (${\kappa}$, ${\mu}$)-space form have been studied.

h-almost Ricci Solitons on Generalized Sasakian-space-forms

  • Doddabhadrappla Gowda, Prakasha;Amruthalakshmi Malleshrao, Ravindranatha;Sudhakar Kumar, Chaubey;Pundikala, Veeresha;Young Jin, Suh
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.715-728
    • /
    • 2022
  • The aim of this article is to study the h-almost Ricci solitons and h-almost gradient Ricci solitons on generalized Sasakian-space-forms. First, we consider h-almost Ricci soliton with the potential vector field V as a contact vector field on generalized Sasakian-space-form of dimension greater than three. Next, we study h-almost gradient Ricci solitons on a three-dimensional quasi-Sasakian generalized Sasakian-space-form. In both the cases, several interesting results are obtained.

SOME RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH GENERALIZED (k, µ)'-NULLITY DISTRIBUTION

  • De, Uday Chand;Ghosh, Gopal
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1289-1301
    • /
    • 2019
  • In the present paper, we prove that if there exists a second order parallel tensor on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution and $h^{\prime}{\neq}0$, then either the manifold is isometric to $H^{n+1}(-4){\times}{\mathbb{R}}^n$, or, the second order parallel tensor is a constant multiple of the associated metric tensor of $M^{2n+1}$ under certain restriction on k, ${\mu}$. Besides this, we study Ricci soliton on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution. Finally, we characterize such a manifold admitting generalized Ricci soliton.

RICCI 𝜌-SOLITONS ON 3-DIMENSIONAL 𝜂-EINSTEIN ALMOST KENMOTSU MANIFOLDS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.613-623
    • /
    • 2020
  • The notion of quasi-Einstein metric in theoretical physics and in relation with string theory is equivalent to the notion of Ricci soliton in differential geometry. Quasi-Einstein metrics or Ricci solitons serve also as solution to Ricci flow equation, which is an evolution equation for Riemannian metrics on a Riemannian manifold. Quasi-Einstein metrics are subject of great interest in both mathematics and theoretical physics. In this paper the notion of Ricci 𝜌-soliton as a generalization of Ricci soliton is defined. We are motivated by the Ricci-Bourguignon flow to define this concept. We show that if a 3-dimensional almost Kenmotsu Einstein manifold M is a 𝜌-soliton, then M is a Kenmotsu manifold of constant sectional curvature -1 and the 𝜌-soliton is expanding with λ = 2.

RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH 𝛽-KENMOTSU STRUCTURE

  • Sudhakar Kumar Chaubey;Young Jin Suh
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.341-358
    • /
    • 2023
  • Our aim is to study the properties of Fischer-Marsden conjecture and Ricci-Bourguignon solitons within the framework of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. It is proven that a (2n + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure satisfying the Fischer-Marsden equation is a conformal gradient soliton. Also, it is shown that a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is either ψ∖Tk × M2n+1-k or gradient 𝜂-Yamabe soliton.

ON GRADIENT RICCI SOLITONS AND YAMABE SOLITONS

  • Choi, Jin Hyuk;Kim, Byung Hak;Lee, Sang Deok
    • 충청수학회지
    • /
    • 제33권2호
    • /
    • pp.219-226
    • /
    • 2020
  • In this paper, we consider gradient Ricci solitons and gradient Yamabe solitons in the warped product spaces. Also we study warped product space with harmonic curvature related to gradient Ricci solitons and gradient Yamabe solitons. Consequently some theorems are generalized and we derive differential equations for a warped product space to be a gradient Ricci soliton.

CERTAIN SOLITONS ON GENERALIZED (𝜅, 𝜇) CONTACT METRIC MANIFOLDS

  • Sarkar, Avijit;Bhakta, Pradip
    • Korean Journal of Mathematics
    • /
    • 제28권4호
    • /
    • pp.847-863
    • /
    • 2020
  • The aim of the present paper is to study some solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. We study gradient Yamabe solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. It is proved that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is gradient Einstein soliton then ${\mu}={\frac{2{\kappa}}{{\kappa}-2}}$. It is shown that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is closed m-quasi Einstein metric then ${\kappa}={\frac{\lambda}{m+2}}$ and 𝜇 = 0. We also study conformal gradient Ricci solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds.

GENERALIZED 𝜂-RICCI SOLITONS ON QUASI-SASAKIAN 3-MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN KAMPEN CONNECTION

  • Shahroud Azami
    • 호남수학학술지
    • /
    • 제45권4호
    • /
    • pp.655-667
    • /
    • 2023
  • In this paper, we study quasi-Sasakian 3-dimensional manifolds admitting generalized 𝜂-Ricci solitons associated to the Schouten-van Kampen connection. We give an example of generalized 𝜂-Ricci solitons on a quasi-Sasakian 3-dimensional manifold with respect to the Schouten-van Kampen connection to prove our results.

Generalized 𝜂-Ricci Solitons on Kenmotsu Manifolds associated to the General Connection

  • Shahroud Azami
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.261-270
    • /
    • 2024
  • In this paper, we consider generalized 𝜂-Ricci solitons associated to the general connection on Kenmotsu manifolds. We confirm the existence of such solitons by constructing a non-trivial example, and we obtain some properties of Kenmotsu manifolds that admit the generalized 𝜂-Ricci solitons associated with the general connection.