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GENERALIZED η-RICCI SOLITONS ON QUASI-SASAKIAN

3-MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN

KAMPEN CONNECTION

Shahroud Azami

Abstract. In this paper, we study quasi-Sasakian 3-dimensional mani-
folds admitting generalized η-Ricci solitons associated to the Schouten-

van Kampen connection. We give an example of generalized η-Ricci

solitons on a quasi-Sasakian 3-dimensional manifold with respect to the
Schouten-van Kampen connection to prove our results.

1. Introduction

The quasi-Sasakian manifold was introduced by Blair [10] as a class of al-
most contact metric manifolds in order to unify Sasakian and cosymplectic
manifolds. Tanno [38] also added some remarks on quasi-Sasakian structures.
Three dimensional quasi-Sasakian manifolds were studied by many authors
[18, 19, 27, 28, 31, 32]. Recently quasi-Sasakian structures have become a
topic of growing interest due to its significant applications to physics, in par-
ticular to string theory, super gravity, and magnetic theory [1, 2, 20]. On
three-dimensional quasi-Sasakian manifold the structure function was defined
by Olszak and with the help of this structure function he obtained a necessary
and sufficient condition for such manifolds to be conformally flat [28].

In 1982, Hamilton [21] introduced the notion of Ricci flow on a Riemannian
manifold as follows:

∂

∂t
g = −2S,

where S is the Ricci tensor of a manifold. The Ricci solitons are special solutions
of the Ricci flow equation and generalizations of Einstein metrics. A Ricci
soliton [11] is a triplet (g, V, λ) on a pseudo-Riemannian manifold M such that

(1) LV g + 2S + 2λg = 0,

where LV is the Lie derivative along the potential vector field V , S is the Ricci
tensor, and λ is a real constant. Metrics satisfying (1) are interesting and useful
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in physics and are often referred as quasi-Einstein [13, 14]. The Ricci soliton
is said to be shrinking, steady, and expanding according as λ < 0 , λ = 0 and
λ > 0, respectively. If the vector field V is the gradient of a potential function
ψ, then g is called a gradient Ricci soliton. In 2016, Nurowski and Randall [26]
introduced the notion of generalized Ricci soliton as follows:

LV g + 2µV ♭ ⊗ V ♭ − 2αS − 2λg = 0,

where V ♭ is the canonical 1-form associated to V . Also, as a generalization of
Ricci soliton, the notion of η-Ricci soliton was introduced by Cho and Kimura
[17], which is a 4-tuple (g, V, λ, ρ), such that V is a vector field on M , λ and ρ
are constants, and g is a pseudo-Riemannian metric satisfying the equation

LV g + 2S + 2λg + 2ρη ⊗ η = 0.

Many authors studied the η-Ricci solitons [5, 6, 7, 22, 24, 30, 39]. In partic-
ular, if ρ = 0, then the η-Ricci soliton equation reduces to the Ricci soliton
equation. Motivated by the above studies, Siddiqi [34] introduced the notion
of a generalized η-Ricci soliton as follows:

LV g + 2µV ♭ ⊗ V ♭ + 2S + 2λg + 2ρη ⊗ η = 0.

Motivated by [3, 12, 25] and the above works, we study generalized η-Ricci
solitons on quasi-Sasakian 3-dimensional manifolds associated to the Schouten-
van Kampen connection. We give an example of generalized η-Ricci soliton on a
quasi-Sasakian 3-dimensional manifold associated to the Schouten-van Kampen
connection.

The paper is organized as follows. In Section 2, we recall some necessary and
fundamental concepts and formulas on quasi-Sasakian 3-dimensional manifolds
which are used throughout the paper. In Section 3, we give the main results
and their proofs. In Section 4, we give an example of a quasi-Sasakian 3-
dimensional manifold which admits a generalized η-Ricci soliton with respect
to the Schouten-van Kampen connection.

2. Preliminaries

A (2n+1)-dimensional Riemannian manifold (M, g) is said to be an almost
contact metric manifold [8, 9] with an almost contact structure (φ, ξ, η, g) if
there exist a (1, 1)-tensor field φ, a vector field ξ, and a 1-form η such that

φ2(X) = −X + η(X)ξ, η(ξ) = 1,(2)

g(φX,φY ) = g(X,Y )− η(X)η(Y ),(3)

for any vector fields X,Y . In this case, we have φξ = 0, η ◦ φ = 0, and
η(X) = g(X, ξ). An almost contact metric manifold M is a quasi-Sasakian
3-dimensional manifold if and only if

(4) ∇Xξ = −σφX,
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for any vector field X, where σ is a certain function onM , such that ξσ = 0 and
∇ is the Levi-Civita connection of g [27]. Clearly, a quasi-Sasakian manifold is
cosymplectic if and only if σ = 0 [23]. By virtue of (4), we have

(∇Xφ)Y = σ(g(X,Y )ξ − η(Y )X),

(∇Xη)Y = −σg(φX, Y ),

for any vector fields X,Y [27]. Using (4) and (5), we find

R(X,Y )ξ = −X[σ]φY + Y [σ]φX + σ2{η(Y )X − η(X)Y },
R(X, ξ)ξ = σ2{X − η(X)ξ},
R(X, ξ)Y = −X[σ]φY − σ2{g(X,Y )ξ − η(Y )X}(5)

for any vector fields X,Y , where R is the Riemannian curvature tensor. The
Ricci tensor S of a quasi-Sasakian 3-dimensional manifold M is determined by
(6)

S(X,Y ) = (
r

2
−σ2)g(X,Y )+(3σ2− r

2
)η(X)η(Y )−η(X)dσ(φY )−η(Y )dσ(φX)

for any vector fields X,Y , where r is the scalar curvature of M . From (6), we
also get

(7) S(X, ξ) = 2σ2η(X)− dσ(φX)

for any vector field X.
Suppose thatM is an almost contact metric manifold and TM is the tangent

bundle of M . We have two naturally defined distributions on tangent bundle
TM as follows:

H = kerη, Ĥ = span{ξ}.
Thus we get TM = H ⊕ Ĥ. Therefore, by this composition we can define the
Schouten-van Kampen connection ∇̄ [4, 35] on M with respect to Levi-Civita
connection ∇ as follows:

(8) ∇̄XY = ∇XY − η(Y )∇Xξ + ((∇Xη)(Y ))ξ

for any vector fields X,Y . From [29, 35, 36, 37], we have

∇̄ξ = 0, ∇̄g = 0, ∇̄η = 0,

and the torsion T̄ of ∇̄ is given by

T̄ (X,Y ) = η(X)∇Xξ − η(X)∇Y ξ + 2dη(X,Y )ξ.

Let R̄ and S̄ be the curvature tensors and the Ricci tensors of the connection
∇̄, respectively. From [29] on a quasi-Sasakian 3-manifold, we have

(9) ∇̄XY = ∇XY + ση(X)φY + σg(Y, φX)ξ

and

(10) S̄(X,Y ) = S(X,Y ) + (φX)[σ]η(Y )− 2σ2η(X)η(Y )
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where S denotes the Ricci tensor of the connection ∇. Using (10), the Ricci
operator Q̄ of the connection ∇̄ is determined by

Q̄X = QX + (φX)[σ]ξ − 2σ2η(X)ξ.

Let r and r̄ be the scalar curvature of the Levi-Civita connection ∇ and the
Schouten-van Kampen connection ∇̄, respectively. The equation (10) yields

r̄ = r − 2σ2.

Applying (9) and ∇̄g = 0, we get

LV g = LV g

for any vector filed V , where LV g is the Lie derivative along the potential
vector field V with respect to the Schouten-van Kampen connection ∇̄ and

(LV g)(Y,Z) := g(∇̄Y V,Z) + g(Y, ∇̄ZV )

for any vector fields X,Y on M . The generalized η-Ricci soliton associated to
the Schouten-van Kampen connection is defined by

(11) αS̄ +
β

2
LV g + µV ♭ ⊗ V ♭ + ρη ⊗ η + λg = 0,

where S̄ denotes the Ricci tensor of the connection ∇̄, V ♭ is the canonical 1-form
associated to V that is V ♭(X) = g(V,X) for any vector field X, λ is a smooth
function on M , and α, β, µ, ρ are real constants such that (α, β, µ) ̸= (0, 0, 0).

The generalized η-Ricci soliton equation reduces to

(1) the η-Ricci soliton equation when α = 1 and µ = 0,
(2) the Ricci soliton equation when α = 1, µ = 0, and ρ = 0, and
(3) the generalized Ricci soliton equation when ρ = 0.

3. Main results and their proofs

A quasi-Sasakian 3-dimensional manifold is said to η-Einstein if its Ricci
tensor S is of the form

S = ag + bη ⊗ η,

where a and b are smooth functions on manifold. LetM be a non-cosymplectic
quasi-Sasakian 3-manifold. Now, we considerM which satisfies the generalized
η-Ricci soliton (11) associated to the Schouten-van Kampen connection, and the
potential vector field V is a pointwise collinear vector field with the structure
vector field ξ, that is, V = fξ for some function f on M . Using (4), we get

Lfξg(X,Y ) = g(∇̄Xfξ, Y ) + g(X, ∇̄Y fξ)

= X[f ]η(Y ) + Y [f ]η(X)(12)

for any vector fields X,Y . Also, we have

(13) ξ♭ ⊗ ξ♭(X,Y ) = η(X)η(Y )
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for any vector fields X,Y . Applying V = fξ, (10), (12), and (13) in the
equation (11), we infer

αS(X,Y ) + α(φX)[σ]η(Y ) +
β

2
X[f ]η(Y )

+
β

2
Y [f ]η(X) + (µf2 + ρ− 2ασ2)η(X)η(Y ) + λg(X,Y ) = 0(14)

for any vector fields X,Y . We plug Y = ξ in the above equation and using (7)
to yield

(15)
β

2
X[f ] +

β

2
ξ[f ]η(X) + (µf2 + ρ+ λ)η(X) = 0.

Taking X = ξ in (15) gives

(16) βξ[f ] = −(µf2 + ρ+ λ).

Inserting (16) in (15), we conclude

βX[f ] = −(µf2 + ρ+ λ)η(X),

which yields

(17) βdf = −(µf2 + ρ+ λ)η.

Applying (17) in (14), we obtain

(18) αS̄(X, y) = λ(−g(X,Y ) + η(X)η(Y )),

which implies αr̄ = −2λ.
Therefore, this leads to the following theorem:

Theorem 3.1. Let (M, g, φ, ξ, η) be a non-cosymplectic quasi-Sasakian 3-
dimensional manifold. IfM admits a generalized η-Ricci soliton (g, V, α, β, µ, ρ, λ)
with respect to the Schouten-van Kampen connection such that α ̸= 0 and
V = fξ for some smooth function f on M , then M is an η-Einstein manifold
with respect to the Schouten-van Kampen connection.

From (18), we also have the following corollary:

Corollary 3.2. Let (M, g, φ, ξ, η) be a non-cosymplectic quasi-Sasakian 3-
dimensional manifold. IfM admits a generalized η-Ricci soliton (g, V, α, β, µ, ρ, λ)
with respect to the Schouten-van Kampen connection such that V = fξ for
some smooth function f on M , then αr̄ = −2λ.

Now, let M be an η-Einstein quasi-Sasakian 3-dimensional manifold with
respect to the Schouten-van Kampen connection and V = ξ. Then, we get
S̄ = ag + bη ⊗ η for some functions a and b on M . From (2), (3), and (4), we
have

Lξg(X,Y ) = Lξg(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ)

= g(−σφX, Y ) + g(X,−σφY )

= −σ(g(ϕX, Y ) + g(X,φY )) = 0
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for any vector fields X,Y . Therefore,

αS̄ +
β

2
Lξg + µξ♭ ⊗ ξ♭ + ρη ⊗ η + λg

= aαg + bαη ⊗ η + µη ⊗ η + ρη ⊗ η + λg

= (aα+ λ)g + (bα+ µ+ ρ)η ⊗ η.

From the above equation,M admits a generalized η-Ricci soliton (g, ξ, α, β, µ, ρ, λ)
with respect to the Schouten-van Kampen connection if λ = −aα and ρ =
−bα− µ.

Hence, we can state the following theorem:

Theorem 3.3. Suppose thatM is an η-Einstein quasi-Sasakian 3-dimensional
manifold with respect to the Schouten-van Kampen connection, that is, S̄ =
ag + bη ⊗ η for some constants a and b on M . Then the manifold M satisfies
a generalized η-Ricci soliton (g, ξ, α, β, µ,−bα − µ,−aα) with respect to the
Schouten-van Kampen connection.

Applying (10) in (18), we obtain

(19) S(X,Y ) + (φX)[σ]η(Y )− 2σ2η(X)η(Y ) = λ(−g(X,Y ) + η(X)η(Y ))

for any vector fields X,Y . Substituting (6) in (19), we get

(
r

2
− σ2 + λ)g(X,Y ) + (σ2 − r

2
− λ)η(X)η(Y )− (φY )[σ]η(X) = 0

for any vector fields X,Y . We plug X = ξ in the above equation to yield

(20) (φY )[σ] = 0.

Replacing φY instead of Y in (20) and using ξ[σ] = 0, we infer

dσ(Y ) = 0,

that is σ is constant. Thus, we can state the following theorem:

Theorem 3.4. Suppose thatM is a quasi-Sasakian 3-dimensional manifold.
If M satisfies the generalized η-Ricci soliton (g, ξ, α, β, µ, ρ, λ) with respect to
the Schouten-van Kampen connection such that α ̸= 0 and µ + ρ = −λ then
M is a σ-Sasakian manifold.

In a generalized η-Ricci soliton (g, ξ, α, β, µ, ρ, λ) with respect to the Schouten-
van Kampen connection, if V = ∇ψ, where ψ ∈ C∞(M), then g is called a
generalized gradient η-Ricci soliton. In this case, we have

LV g(X,Y ) = L∇ψg(X,Y ) = L∇ψg(X,Y ) = 2Hessψ(X,Y ),

V ♭(X) = (∇ψ)♭(X) = g(∇ψ,X) = dψ(X)

for any vector fields X,Y . Hence, the equation (11) becomes

(21) αS̄ + βHessψ + µdψ ⊗ dψ + ρη ⊗ η + λg = 0.

From the property of Lie derivative, we conclude

(Lξ(LXg))(Y, ξ) = ξ((LXg)(Y, ξ))− LXg(LξY, ξ)− LXg(Y,Lξξ)



Generalized η-Ricci solitons on quasi-Sasakian 3-manifolds 661

for any vector fields X,Y . Since LξY = [ξ, Y ] and Lξξ = 0, we deduce

(Lξ(LXg))(Y, ξ) = g(∇ξ∇YX, ξ)+g(Y,∇ξ∇ξX)−g(∇[ξ,Y ]X, ξ)+g(∇ξX,∇Y ξ)

for any vector fields X,Y . We have ∇ξξ = −σφξ = 0, so that we get

(Lξ(LXg))(Y, ξ) = g(∇ξ∇YX, ξ) + g(Y,∇ξ∇ξX)− g(∇[ξ,Y ]X, ξ)

+Y g(∇ξX, ξ)− g(∇Y∇ξX, ξ)

for any vector fields X,Y . By definition of Riemannian curvature, we have

(Lξ(LXg))(Y, ξ) = g(R(ξ, Y )X, ξ) + g(Y,∇ξ∇ξX) + Y g(∇ξX, ξ)

for any vector fields X,Y . The equation (5) implies that
(22)
(Lξ(LXg))(Y, ξ) = σ2g(X,Y )− σ2η(X)η(Y ) + g(Y,∇ξ∇ξX) + Y g(∇ξX, ξ)

for any vector fields X,Y . Also, by a direct computation we have

Lξ(dψ ⊗ dψ)(Y, ξ) = ξ((dψ ⊗ dψ)(Y, ξ))− (dψ ⊗ dψ)(LξY, ξ)
−(dψ ⊗ dψ)(Y,Lξξ)

= ξ(Y [ψ]ξ[ψ])− [ξ, Y ][ψ]ξ[ψ]− Y [ψ][ξ, ξ][ψ]

= ξ[Y [ψ]]ξ[ψ] + Y [ψ]ξ[ξ[ψ]]− [ξ, Y ][ψ]ξ[ψ]

for any vector field Y . Since [ξ, Y ][ψ] = ξ[Y [ψ]]− Y [ξ[ψ]], we obtain

(23) Lξ(dψ ⊗ dψ)(Y, ξ) = Y [ξ[ψ]]ξ[ψ] + Y [ψ]ξ[ξ[ψ]]

for any vector field Y . Using (7), (10) and (21), we have

−βHessψ(Y, ξ) = αS̄(Y, ξ) + µdψ ⊗ dψ(Y, ξ) + (ρ+ λ)η(Y )

= −αdσ(φY ) + µdψ(ξ)dψ(Y ) + (ρ+ λ)η(Y )

for any vector field Y . By definition of Hessψ, we conclude that

−βg(∇ξ∇ψ, Y ) = αg(φ(∇σ), Y ) + µdψ(ξ)g(∇ψ, Y ) + (ρ+ λ)η(Y )

for any vector field Y . Therefore,

(24) −β∇ξ∇ψ = µdψ(ξ)∇ψ + (ρ+ λ)ξ.

Putting X = ∇ψ in (22) and considering η(Y ) = 0, we get

(25) 2(Lξ(Hessψ))(Y, ξ) = σ2g(∇ψ, Y ) + g(Y,∇ξ∇ξ∇ψ) + Y g(∇ξ∇ψ, ξ).

Applying (24) to (25), we arrive at

−2β(Lξ(Hessψ))(Y, ξ)

= −βσ2Y [ψ] + αg(∇ξφ(∇σ), Y ) + µdψ(ξ)g(∇ξ∇ψ, Y )

+µξ[dψ(ξ)]g(∇ψ, Y ) + 2µY [dψ(ξ)]g(∇ψ, ξ) + Y [λ].
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Also, by considering η(Y ) = 0, we have

(LξS̄)(Y, ξ) = ξ[S̄(Y, ξ)]− S̄(LξY, ξ)− S̄(Y,Lξξ)
= ξ(φ(Y )[σ])− φ(LξY )[σ] + 2σ2η(LξY )

= −ξ(g(Y, φ(∇σ))) + g(∇ξY −∇Y ξ, φ(∇σ))
+2σ2g(ξ,∇ξY −∇Y ξ)

= −g(Y,∇ξφ(∇σ)) + σ(Y,∇σ).
If σ and λ are two constants and β ̸= 0, then (LξS̄)(Y, ξ) = 0 and

−2β(Lξ(Hessψ))(Y, ξ) = −βσ2Y [ψ] + µdψ(ξ)g(∇ξ∇ψ, Y )

+µξ[dψ(ξ)]g(∇ψ, Y ) + 2µY [dψ(ξ)]g(∇ψ, ξ)(26)

= −βσ2Y [ψ]− µ2

β
(dψ(ξ))2g(∇ψ, Y )

+µξ[dψ(ξ)]g(∇ψ, Y ) + 2µY [dψ(ξ)]g(∇ψ, ξ).
Taking the Lie derivative of the generalized η-Ricci soliton equation (21) yields

(27) −2β(Lξ(Hessψ))(Y, ξ) = 2µLξ(dψ ⊗ dψ)(Y, ξ).

Hence, from equations (23), (26) and (27), we infer

−βσ2Y [ψ]− µ2

β
(dψ(ξ))2g(∇ψ, Y ) + µξ[dψ(ξ)]g(∇ψ, Y )

+2µY [dψ(ξ)]g(∇ψ, ξ)− 2µ (Y [ξ[ψ]]ξ[ψ] + Y [ψ]ξ[ξ[ψ]]) = 0.(28)

We have

(29) ξ[ξ[ψ]] = ξ[g(ξ,∇ψ)] = g(ξ,∇ξ∇ψ) = − 1

β

(
µ(dψ(ξ))2 + ρ+ λ

)
.

Substituting (29) into (28), we get(
β2σ2 + (−µ+ µ2)(dψ(ξ))2 − µ(ρ+ λ)

)
Y [ψ] = 0.

If µ ∈ {0, 1} and β2σ2 − µ(ρ+ λ) ̸= 0, then Y [ψ] = 0, i.e., ∇ψ is parallel to ξ.
Thus ∇ψ = 0 as D = kerη is nowhere integrable, i.e., ψ is a constant function.
Hence, we state the following theorem:

Theorem 3.5. Let M be a quasi-Sasakian 3-dimensional manifold bearing
a generalized gradient η-Ricci soliton associated to the Schouten-van Kampen
connection (21) with β ̸= 0, µ = 0 or 1, β2σ2 − µ(ρ + λ) ̸= 0. Let σ and λ be
two constants. Then ψ is a constant function andM is an η-Einstein manifold.

Definition 3.6. A vector field V is said to a conformal Killing vector field
if

(30) (LV g)(X,Y ) = 2hg(X,Y )

for any vector fields X,Y , where h is some function on M . The conformal
Killing vector field V is called

• proper when h is not constant,
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• homothetic vector field when h is a constant, and
• Killing vector field when h = 0.

Let V be a conformal Killing vector field satisfying (30). By (30), (10), and
(11), we have

α(S(X,Y ) + (φX)[σ]η(Y )− 2σ2η(X)η(Y )) + βhg(X,Y )

+µV ♭(X)V ♭(Y ) + ρη(X)η(Y ) + λg(X,Y ) = 0

for any vector fields X,Y . By inserting Y = ξ in the above equation, we get

g(βhξ + µη(V )V + ρξ + λξ,X) = 0,

for any vector fieldX. SinceX is an arbitrary vector field, we have the following
theorem:

Theorem 3.7. If the metric g of a quasi-Sasakian 3-dimensional manifold
satisfies the generalized η-Ricci soliton associated to the Schouten-van Kampen
connection (11) (g, V, α, β, µ, ρ, λ), where V is conformally Killing vector field,
that is, LV g = 2hg, then

(βh+ ρ+ λ)ξ + µη(V )V = 0.

Definition 3.8. A nonvanishing vector field V on a pseudo-Riemannian
manifold (M, g) is called torse-forming [41] if

(31) ∇XV = fX + ω(X)V,

for any vector field X, where ∇ is the Levi-Civita connection of g, f is a smooth
function, and ω is a 1-form. The vector field V is called

• concircular [16, 40] whenever in the equation (31) the 1-form ω vanishes
identically,

• concurrent [33, 42] if in equation (31) the 1-form ω vanishes identically
and f = 1,

• parallel vector field if in equation (31) f = ω = 0, and
• torqued vector field [15] if in equation (31) ω(V ) = 0.

Let (g, V, α, β, µ, ρ, λ) be a generalized η-Ricci soliton on a quasi-Sasakian
3-dimensional manifold associated to the Schouten-van Kampen connection,
where V is a torse-forming vector filed satisfying (31). Then

α(S(X,Y ) + (φX)[σ]η(Y )− 2σ2η(X)η(Y )) + (LV g)(X,Y )(32)

+µV ♭(X)V ♭(Y ) + ρη(X)η(Y ) + λg(X,Y ) = 0

for any vector fields X,Y . On the other hand,

(33) (LV g)(X,Y ) = 2fg(X,Y ) + ω(X)g(V, Y ) + ω(Y )g(V,X)

for any vector fields X,Y . Applying (33) to (32), we arrive at

αS(X,Y ) + α((φX)[σ]η(Y )− 2σ2η(X)η(Y )) + [βf + λ] g(X,Y )

+ρη(X)η(Y ) +
β

2
[ω(X)g(V, Y ) + ω(Y )g(V,X)] + µg(V,X)g(V, Y ) = 0
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for any vector fields X,Y . We take the contraction of the above equation over
X and Y to obtain

αr + α

3∑
i=1

g(ei, φ(∇σ))− 2σ2α+ 3 [βf + λ] + ρ+ βω(V ) + µ|V |2 = 0.

Therefore we have the following theorem:

Theorem 3.9. If the metric g of a quasi-Sasakian 3-dimensional manifold
satisfies the generalized η-Ricci soliton (g, V, α, β, µ, ρ, λ), where V is torse-
forming vector filed satisfying (31), then

λ = −1

3

[
αr + α

3∑
i=1

g(ei, φ(∇σ))− 2σ2α+ ρ+ βω(V ) + µ|V |2
]
− βf.

4. Example

In this section, we give an example of a quasi-Sasakian 3-dimensional man-
ifold with respect to the Schouten-van Kampen connection such that it admits
in a generalized η-Ricci soliton associated to the Schouten-van Kampen con-
nection.

Example 4.1. Let (x, y, z) be the standard coordinates in R3 and M =
{(x, y, z) ∈ R3|(x, y, z) ̸= (0, 0, 0)}. We consider the linearly independent vector
fields

e1 =
∂

∂x
− y

∂

∂z
, e2 =

∂

∂y
, e3 =

∂

∂z
.

We define the metric g by

g(ei, ej) =

{
1, if i = j and i, j ∈ {1, 2, 3},
0, otherwise.

We define an almost contact structure (φ, ξ, η) on M by

ξ = e3, η(X) = g(X, e3), φ =

 0 1 0
−1 0 0
0 0 0

 ,

for any vector field X. Note the relations φ2(X) = −X + η(X)ξ, η(ξ) = 1,
and g(φX,φY ) = g(X,Y ) − η(X)η(Y ) hold for any vector fields X,Y . Thus
(M,φ, ξ, η, g) defines an almost contact structure on M . We have

[, ] e1 e2 e3
e1 0 e3 0
e2 -e3 0 0
e3 0 0 0
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The Levi-Civita connection ∇ of M is determined by

∇eiej =

 0 1
2e3 − 1

2e2
− 1

2e3 0 1
2e1

− 1
2e2

1
2e1 0

 .

We see that the structure (φ, ξ, η) satisfies the formula ∇Xξ = −σφX for σ =
− 1

2 . Thus, (M,ϕ, ξ, η, g) becomes a quasi-Sasakian 3-dimensional manifold.
Now, using (8) we get the Schouten-van- Kampen connection on M as follows:

∇̄eiej =

 0 ( 12 + σ)e3 −( 12 + σ)e2
−( 12 + σ)e3 0 (12 + σ))e1

− 1
2e2

1
2e1 0

 .

The nonvanishing components of curvature tensor with respect to the Schouten-
van Kampen connection are:

R̄(e1, e2)e1 =
1

2
e2, R̄(e1, e2)e2 = −1

2
e1,

R̄(e1, e3)e1 = −(
1

4
+
σ

2
)e3, R̄(e1, e3)e2 = −(

1

4
+
σ

2
)e3.

Hence, we obtain

S̄ =

 σ
2 − 1

4 0 0
0 σ

2 − 1
4 0

0 0 0

 = (
σ

2
− 1

4
)(g − η ⊗ η).

If we consider V = ξ, then LV g = 0. Therefore (g, ξ, α, β, µ, ρ = α(σ2 − 1
4 ) −

µ, λ = −α(σ2 − 1
4 )) is a generalized η-Ricci soliton on manifold M with respect

to the Schouten-van Kampen connection.
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