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GENERALIZED 7n-RICCI SOLITONS ON QUASI-SASAKIAN
3-MANIFOLDS ASSOCIATED TO THE SCHOUTEN-VAN
KAMPEN CONNECTION

SHAHROUD AZAMI

Abstract. In this paper, we study quasi-Sasakian 3-dimensional mani-
folds admitting generalized n-Ricci solitons associated to the Schouten-
van Kampen connection. We give an example of generalized n-Ricci
solitons on a quasi-Sasakian 3-dimensional manifold with respect to the
Schouten-van Kampen connection to prove our results.

1. Introduction

The quasi-Sasakian manifold was introduced by Blair [10] as a class of al-
most contact metric manifolds in order to unify Sasakian and cosymplectic
manifolds. Tanno [38] also added some remarks on quasi-Sasakian structures.
Three dimensional quasi-Sasakian manifolds were studied by many authors
[18, 19, 27, 28, 31, 32]. Recently quasi-Sasakian structures have become a
topic of growing interest due to its significant applications to physics, in par-
ticular to string theory, super gravity, and magnetic theory [1, 2, 20]. On
three-dimensional quasi-Sasakian manifold the structure function was defined
by Olszak and with the help of this structure function he obtained a necessary
and sufficient condition for such manifolds to be conformally flat [28].

In 1982, Hamilton [21] introduced the notion of Ricci flow on a Riemannian
manifold as follows: 5

Zg=
ot
where S is the Ricci tensor of a manifold. The Ricci solitons are special solutions
of the Ricci flow equation and generalizations of Einstein metrics. A Ricci
soliton [11] is a triplet (g, V, A) on a pseudo-Riemannian manifold M such that

(1) Lyvg+25+2\g =0,

where Ly is the Lie derivative along the potential vector field V', S is the Ricci
tensor, and A\ is a real constant. Metrics satisfying (1) are interesting and useful
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in physics and are often referred as quasi-Einstein [13, 14]. The Ricci soliton
is said to be shrinking, steady, and expanding according as A <0, A =0 and
A > 0, respectively. If the vector field V' is the gradient of a potential function
1, then g is called a gradient Ricci soliton. In 2016, Nurowski and Randall [26]
introduced the notion of generalized Ricci soliton as follows:

Lyvg+2uV’® VP —2a8 — 2Ag =0,

where V? is the canonical 1-form associated to V. Also, as a generalization of
Ricci soliton, the notion of n-Ricci soliton was introduced by Cho and Kimura
[17], which is a 4-tuple (g, V, A, p), such that V is a vector field on M, A and p
are constants, and g is a pseudo-Riemannian metric satisfying the equation

Lyvg+25+2Xg+2m@n=0.

Many authors studied the 7-Ricci solitons [5, 6, 7, 22, 24, 30, 39]. In partic-
ular, if p = 0, then the n-Ricci soliton equation reduces to the Ricci soliton
equation. Motivated by the above studies, Siddiqi [34] introduced the notion
of a generalized n-Ricci soliton as follows:

Lyvg—+2uV>@V°+28+2Xg+ 2pn @ n = 0.

Motivated by [3, 12, 25] and the above works, we study generalized 7-Ricci
solitons on quasi-Sasakian 3-dimensional manifolds associated to the Schouten-
van Kampen connection. We give an example of generalized n-Ricci soliton on a
quasi-Sasakian 3-dimensional manifold associated to the Schouten-van Kampen
connection.

The paper is organized as follows. In Section 2, we recall some necessary and
fundamental concepts and formulas on quasi-Sasakian 3-dimensional manifolds
which are used throughout the paper. In Section 3, we give the main results
and their proofs. In Section 4, we give an example of a quasi-Sasakian 3-
dimensional manifold which admits a generalized n-Ricci soliton with respect
to the Schouten-van Kampen connection.

2. Preliminaries

A (2n+1)-dimensional Riemannian manifold (M, g) is said to be an almost
contact metric manifold [8, 9] with an almost contact structure (¢, &, n,g) if
there exist a (1, 1)-tensor field ¢, a vector field £, and a 1-form 7 such that

(2) P*(X) = =X +(X)En(€) =1,
3) 9(e X, 9Y) = g(X,Y) = n(X)n(Y),
for any vector fields X,Y. In this case, we have € = 0, no ¢ = 0, and

n(X) = g(X,€). An almost contact metric manifold M is a quasi-Sasakian
3-dimensional manifold if and only if

(4) Vxé=—0pX,
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for any vector field X, where o is a certain function on M, such that £o = 0 and
V is the Levi-Civita connection of g [27]. Clearly, a quasi-Sasakian manifold is
cosymplectic if and only if o = 0 [23]. By virtue of (4), we have
(Vxp)Y =0o(9(X,Y) —n(Y)X),
(Vxn)Y = —og(¢X,Y),
for any vector fields X, Y [27]. Using (4) and (5), we find
R(X,Y)¢ = —X[o]pY +Y[olpX + o*{n(Y)X — n(X)Y},
R(X,£)¢ = o*{X —n(X)¢},
(5) R(X, €Y = —X[o]pY — o*{g(X, V)¢ —n(Y)X}

for any vector fields X,Y, where R is the Riemannian curvature tensor. The
Ricci tensor S of a quasi-Sasakian 3-dimensional manifold M is determined by

(6)
S(X,Y) = (5-0%)9(X, Y)+ (30> = S In(X)n(Y) ~n(X)do(Y ) =n(Y )do(pX)

for any vector fields X,Y’, where r is the scalar curvature of M. From (6), we
also get

(7) S(X,€) = 20°n(X) — do(pX)

for any vector field X.

Suppose that M is an almost contact metric manifold and T'M is the tangent
bundle of M. We have two naturally defined distributions on tangent bundle
TM as follows:

H = kern, H = span{¢}.

Thus we get TM = H ® H. Therefore, by this composition we can define the
Schouten-van Kampen connection V [4, 35] on M with respect to Levi-Civita
connection V as follows:

(8) VxY = VxY —n(Y)Vx&+ (Vxn)(Y))E
for any vector fields X, Y. From [29, 35, 36, 37], we have

VE=0, Vg =0, Vn =0,
and the torsion T of V is given by

T(X,Y) =n(X)Vx§ —n(X)VyE& +2dn(X,Y)E.

Let R and S be the curvature tensors and the Ricci tensors of the connection

V, respectively. From [29] on a quasi-Sasakian 3-manifold, we have

(9) VxY =VxY 4+ on(X)pY +og(Y,pX)E

(10) S(X,Y) = S(X,Y) + (0X)[o]n(Y) = 20°n(X)n(Y)
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where S denotes the Ricci tensor of the connection V. Using (10), the Ricci
operator ) of the connection V is determined by

QX = QX + (pX)[0)¢ — 20°n(X)E.

Let r and 7 be the scalar curvature of the Levi-Civita connection V and the
Schouten-van Kampen connection V, respectively. The equation (10) yields

F=r—20°.
Applying (9) and Vg = 0, we get

Lvg=Lvg
for any vector filed V, where Ly g is the Lie derivative along the potential
vector field V' with respect to the Schouten-van Kampen connection V and

(Lvg)(Y,Z) := g(VyV, Z) + g(Y,V V)

for any vector fields X,Y on M. The generalized n-Ricci soliton associated to
the Schouten-van Kampen connection is defined by

(11) a§+§zvg+uvb®vb+p77®77+>\g:0,

where S denotes the Ricci tensor of the connection V, V? is the canonical 1-form
associated to V that is V*(X) = g(V, X) for any vector field X, \ is a smooth
function on M, and «, 3, i, p are real constants such that (a, 8, 1) # (0,0, 0).
The generalized n-Ricci soliton equation reduces to
(1) the n-Ricci soliton equation when o = 1 and p = 0,
(2) the Ricci soliton equation when o =1, p =0, and p = 0, and
(3) the generalized Ricci soliton equation when p = 0.

3. Main results and their proofs

A quasi-Sasakian 3-dimensional manifold is said to n-Einstein if its Ricci

tensor S is of the form
S=ag+bnan,

where a and b are smooth functions on manifold. Let M be a non-cosymplectic
quasi-Sasakian 3-manifold. Now, we consider M which satisfies the generalized
n-Ricci soliton (11) associated to the Schouten-van Kampen connection, and the
potential vector field V' is a pointwise collinear vector field with the structure
vector field &, that is, V = f¢ for some function f on M. Using (4), we get

fog(X7Y) = g(vang) +g(X7 ?Yfg)
(12) = X[fIn(Y)+Y[fIn(X)
for any vector fields X, Y. Also, we have
(13) €& XY)=nX)nY)
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for any vector fields X,Y. Applying V = f¢£, (10), (12), and (13) in the
equation (11), we infer

aS(X.Y) + alpX)laln(¥) + & X[fln(Y)
(14) DY) + (a4 p— 2007 (X)n(Y) + Ag(X,¥) =0

for any vector fields X, Y. We plug Y = £ in the above equation and using (7)
to yield

(15) O XU+ el n(X) + (uf + p+ An(x) =0,
Taking X = £ in (15) gives
(16) BELf] = ~(uf* + 0+ ).

Inserting (16) in (15), we conclude

BX[f] = —(uf* + p+ Mn(X),
which yields

(17) Bdf = —(uf?* + p+ M.
Applying (17) in (14), we obtain
which implies ar = —2\.

Therefore, this leads to the following theorem:

Theorem 3.1. Let (M, g,p,€&,m) be a non-cosymplectic quasi-Sasakian 3-
dimensional manifold. If M admits a generalized n-Ricci soliton (g, V, «, 8, u, p, \)
with respect to the Schouten-van Kampen connection such that o # 0 and
V = f¢€ for some smooth function f on M, then M is an n-Einstein manifold
with respect to the Schouten-van Kampen connection.

From (18), we also have the following corollary:

Corollary 3.2. Let (M, g,¢,£,n) be a non-cosymplectic quasi-Sasakian 3-
dimensional manifold. If M admits a generalized n-Ricci soliton (g, V, v, 8, u, p, \)
with respect to the Schouten-van Kampen connection such that V = f¢ for
some smooth function f on M, then arf = —2\.

Now, let M be an n-Einstein quasi-Sasakian 3-dimensional manifold with
respect to the Schouten-van Kampen connection and V' = £. Then, we get

S = ag + bn ® n for some functions a and b on M. From (2), (3), and (4), we
have

Leg(X,Y) = Leg(X,Y) =9(VxEY) +9(X, V)
9(=opX,Y) + g(X, —0pY)
= —0(g(¢X,Y) +9(X,9Y)) =0
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for any vector fields X,Y. Therefore,

aS’—i-ngg—&-uﬁb@fb-i-P??@n'i‘)\g
=aag+ban@n+un@n+ pnn+ Ag
= (aa+ N)g + (ba+ u+ p)n @ 1.

From the above equation, M admits a generalized n-Ricci soliton (g, &, o, 8, 1, p, A)
with respect to the Schouten-van Kampen connection if A = —a«a and p =
—ba — p.

Hence, we can state the following theorem:

Theorem 3.3. Suppose that M is an n-Einstein quasi-Sasakian 3-dimensional
manifold with respect to the Schouten-van Kampen connection, that is, S =
ag + bn ® n for some constants a and b on M. Then the manifold M satisfies
a generalized n-Ricci soliton (g,€&, «, B, 1, —bav — i, —ac) with respect to the
Schouten-van Kampen connection.

Applying (10) in (18), we obtain
(19)  S(X,Y)+ (pX)[o]n(Y) = 20" n(X)n(Y) = A(=g(X,Y) +n(X)n(Y))
for any vector fields X, Y. Substituting (6) in (19), we get
(5 = 0>+ Ng(X,Y) + (0% = 5 = Nn(X)n(Y) = (Y )[oIn(X) = 0

for any vector fields X, Y. We plug X = ¢ in the above equation to yield

(20) (¥Y)]o] =0.
Replacing Y instead of Y in (20) and using &[o] = 0, we infer
do(Y) = 0,

that is o is constant. Thus, we can state the following theorem:

Theorem 3.4. Suppose that M is a quasi-Sasakian 3-dimensional manifold.
If M satisfies the generalized n-Ricci soliton (g, &, a, B, i, p, \) with respect to
the Schouten-van Kampen connection such that o # 0 and p+ p = —\ then
M is a o-Sasakian manifold.

In a generalized n-Ricci soliton (g, &, «, 8, i, p, A) with respect to the Schouten-
van Kampen connection, if V' = Vi, where ¢p € C°°(M), then g is called a
generalized gradient n-Ricci soliton. In this case, we have

Lyg(X,Y) = Lyyg(X,Y) = Lyyg(X,Y) = 2Hessy(X, Y),
V(X)) = (Vo) (X) = 9(Vi, X) = dip(X)

for any vector fields X,Y. Hence, the equation (11) becomes

(21) aS + BHessy + pdy @ dip + pn @0+ Ag = 0.

From the property of Lie derivative, we conclude

(Le(Lxg))(Y,€) = E(Lxg)(Y;€)) — Lxg(LeY,§) — Lxg(V, Le)
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for any vector fields X, Y. Since LY = [£,Y] and L€ = 0, we deduce
(Le(Lx9)(Y, ) = 9(VeVy X, ) +9(Y, VeV X)—g(Vie v1 X, §) +9(Ve X, Vy€)
for any vector fields X,Y. We have V¢§ = —op§ = 0, so that we get
(Le(Lxg)(Y,8) = g(VeVy X, 0 +9(Y,VeVeX) — g(Vig v X, §)
+Yg(VeX,€) —g(Vy Ve X, §)
for any vector fields X,Y. By definition of Riemannian curvature, we have
(Le(Lxg) (Y, ) = g(R(§,Y)X,€) +9(Y, VeVeX) +Yg(Ve X, §)

for any vector fields X,Y. The equation (5) implies that
(22)
(Le(Lxg)(Y,€) = 0°g(X,Y) = o*n(X)n(Y) + g(Y, VeVeX) + Y g(Ve X, )

for any vector fields X,Y. Also, by a direct computation we have

Le(dyp @dp)(Y,6) = &((d @ dy)(Y,€)) — (dp @ dip)(LeY §)
—(d @ dip)(Y, Le€)
EYYIEW]) — [§, YIYIE[] — YIRS, €][Y)]
= EY[YlIElY] + YIS - [ YIYIEy]

for any vector field Y. Since [£, V][] = £[Y[¢]] — Y[€[¢]], we obtain
(23) Le(dy @ dip)(Y,€) = Y[S[WIIE[] + Y [PIE[E[]]
for any vector field Y. Using (7), (10) and (21), we have

—BHessp(Y,€) = aS(Y,€) + pdy @ dp(Y,€) + (p+ Nn(Y)
= —ado(pY) + pdp(§)dy(Y) + (p+ A)n(Y)

for any vector field Y. By definition of Hesst, we conclude that
—B9(VeVi,Y) = ag(p(Vo), V) + pd(€)g(Vih, Y) + (p+ Nn(Y)
for any vector field Y. Therefore,
(24) —BVeVY = pdp(§) VY + (p + M.
Putting X = V¢ in (2
(25)  2(Le(Hessy))(Y,€) = 0?g(Vh,Y) + g(Y, VeVeVh) + Y g(VeV, €).
),
(

2) and considering n(Y) = 0, we get

Applying (24) to (25), we arrive at

—2p(Le(Hessy))(Y,€)
= —Bo*Y[Y] + ag(Vep(Vo),Y) + pdi(§)g(VeVe,Y)
Fuldy(§)]g(Vep, Y) + 2uY [d(§)]g(Veh, §) + YA
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Also, by considering n(Y) = 0, we have

(LeS)(YV,€) = E[S(Y.€)] = S(LeY,€) — S(Y, Lef)
= &(e(Y)lo]) — (LeY)[o] +20°n(LeY)
= =9V, 9(V0))) +9(VeY = Vy& (Vo))
+20%g(¢,VeY — Vy&)

= —g(Y,Vep(Vo))+0o(Y, Vo).

If o and A are two constants and 3 # 0, then (£¢S)(Y,€) = 0 and

—2p3(Le(Hessyp)) (Y, €) —Ba*Y [P + pdip(€)g(VeVe,Y)
(26) +pldp(§)]g(Vep, Y) + 2uY [dip(§)]g(Veh, §)

= B0Vl - @©)0(v. )

+p&[dp(§)]g(V, Y) + 2uY [dep ()]g(Ve), §).
Taking the Lie derivative of the generalized n-Ricci soliton equation (21) yields

(27) —2B(Le(Hessy)) (Y, §) = 2uLle(dyp @ dip)(Y, ).
Hence, from equations (23), (26) and (27), we infer
807 o]~ @O oV, Y) + el (©la (T Y)
(28) +2uY [dip(§)1g(Vip, §) — 2p (Y [E[Y]IE[] + Y[¥IE[E[w]]) = 0.
We have
(29)  €lelul] = €lale, ) = 9(6 VeVe) =~ (u(dv(€))* + p-+ ).

Substituting (29) into (28), we get
(B20% + (—p+ p?)(dp(€))* — u(p + N) Y[i] = 0.

If 4 € {0,1} and %02 — u(p + \) # 0, then Y[p] = 0, i.e., V4 is parallel to &.
Thus Vi = 0 as D = kern is nowhere integrable, i.e., ¢ is a constant function.
Hence, we state the following theorem:

Theorem 3.5. Let M be a quasi-Sasakian 3-dimensional manifold bearing
a generalized gradient n-Ricci soliton associated to the Schouten-van Kampen
connection (21) with B # 0, u=0or1, 3%20% — u(p+ \) # 0. Let o and \ be
two constants. Then v is a constant function and M is an n-Einstein manifold.

Definition 3.6. A vector field V' is said to a conformal Killing vector field
if
(30) (Lvg)(X,Y) =2hg(X,Y)

for any vector fields X,Y, where h is some function on M. The conformal
Killing vector field V' is called

e proper when h is not constant,
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e homothetic vector field when h is a constant, and
e Killing vector field when h = 0.

Let V be a conformal Killing vector field satisfying (30). By (30), (10), and
(11), we have
a(S(X,Y) + (pX)[o]n(Y) = 20*n(X)n(Y)) + Bhg(X,Y)
+uV (XOVP(Y) + pn(X)n(Y) + Ag(X,Y) =0
for any vector fields X, Y. By inserting Y = £ in the above equation, we get
9(BhE + pn(V)V + p€ + A§, X) = 0,

for any vector field X. Since X is an arbitrary vector field, we have the following
theorem:

Theorem 3.7. If the metric g of a quasi-Sasakian 3-dimensional manifold
satisfies the generalized n-Ricci soliton associated to the Schouten-van Kampen
connection (11) (g,V, «, B, p, p, A), where V' is conformally Killing vector field,
that is, Ly g = 2hg, then

(Bl + p+ NE + pm(V)V = 0.

Definition 3.8. A nonvanishing vector field V' on a pseudo-Riemannian
manifold (M, g) is called torse-forming [41] if
(31) VxV = fX +w(X)V,
for any vector field X, where V is the Levi-Civita connection of g, f is a smooth
function, and w is a 1-form. The vector field V is called

e concircular [16, 40] whenever in the equation (31) the 1-form w vanishes
identically,

e concurrent [33, 42] if in equation (31) the 1-form w vanishes identically
and f =1,

e parallel vector field if in equation (31) f = w =0, and

e torqued vector field [15] if in equation (31) w(V') = 0.

Let (g,V,a, B, 1, p, A) be a generalized n-Ricci soliton on a quasi-Sasakian
3-dimensional manifold associated to the Schouten-van Kampen connection,
where V is a torse-forming vector filed satisfying (31). Then

(32) a(S(X,Y) + (¢X)[o]n(Y) — 20°n(X)n(Y)) + (Lvg)(X,Y)
+uV (X)VP(Y) + pn(X)n(Y) + Ag(X,Y) = 0
for any vector fields X,Y. On the other hand,
(33) (Lvg)(X,Y) =2fg(X,Y) + w(X)g(V,Y) + w(Y)g(V, X)
for any vector fields X, Y. Applying (33) to (32), we arrive at
aS(X,Y) + a((¢X)[o]n(Y) — 20*n(X)n(Y)) + [Bf + A g(X,Y)

Fon(Xn(Y) + 2 [w(X)a(V. Y) +(¥)g(V X)) + ng(V, X)a(V.Y) = 0
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for any vector fields X, Y. We take the contraction of the above equation over
X and Y to obtain
3
ar+aY_ gle, 9(Vo)) —20%a +3[Bf + A + p + Buw(V) + p|V|* = 0.
i=1

Therefore we have the following theorem:

Theorem 3.9. If the metric g of a quasi-Sasakian 3-dimensional manifold
satisfies the generalized n-Ricci soliton (g,V,«, 8, 1, p, A), where V is torse-
forming vector filed satisfying (31), then

3
A=—=lar+a) gle,¢(Vo)) = 20%a+ p+ Buw(V) + p|V|* | - B,

i=1

4. Example

In this section, we give an example of a quasi-Sasakian 3-dimensional man-
ifold with respect to the Schouten-van Kampen connection such that it admits
in a generalized n-Ricci soliton associated to the Schouten-van Kampen con-
nection.

Example 4.1. Let (z,y,2) be the standard coordinates in R* and M =
{(z,y,2) € R3|(z,y,2) # (0,0,0)}. We consider the linearly independent vector

fields
0 0 0 0

12%—(@@, 62:87/’ 6325-
We define the metric g by

e

1, ifi=jandi,j € {1,2,3},
g(ei7ej) = .
0, otherwise.

We define an almost contact structure (¢,&,n) on M by

0O 1 0
§:€3a n(X):g(Xae3)7 Y = -1 0 0 )
0 0 O

for any vector field X. Note the relations p?(X) = —X + n(X)¢, n(&) = 1,
and g(oX,9Y) = g(X,Y) — n(X)n(Y) hold for any vector fields X,Y. Thus
(M, p,&,m,g) defines an almost contact structure on M. We have

[,] ‘ €1 €2 €3
er| 0 e O
€9 | -€3 0 0
es| 0 0 0
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The Levi-Civita connection V of M is determined by

1 1
263 362
Veiej == —%63 0 %61
1
—562 561 0

We see that the structure (p, &, n) satisfies the formula Vx€& = —opX for o =

—1. Thus, (M,¢,&,m,9) becomes a quasi-Sasakian 3-dimensional manifold.
Now, using (8) we get the Schouten-van- Kampen connection on M as follows:

B 0 (3 +0)es —(3+0)e
Ve, €j = —(% +o)es 0 (% +0))er
—%62 %61 0

The nonvanishing components of curvature tensor with respect to the Schouten-
van Kampen connection are:
_ 1 _ 1

Rle1, e2)er = 962 R(eq, e2)e2 = 5

_ 1 o

R(e1,e3)er = *(Z + 2)63, R(ey,es)es = —(= + 5)63_
Hence, we obtain

o _ 1
S 2 1 (e 0 1 0 g
5= 0 2-1 0 :(5_*)(9—77@17).
0 0 0

If we consider V = &, then Lyg = 0. Therefore (g,&, 00, B, p,p = a(§ — 1) —
A= —a(g — %)) is a generalized n-Ricci soliton on manifold M with respect

to the Schouten-van Kampen connection.

Declarations

Funding

This work does not receive any funding.

Conflict of interests

We declare that we do not have any commercial or associative interest that
represents a conflict of interest in connection with the work submitted.

Availability of data and material

All data generated or analysed during this study are included in this pub-
lished article.

Author’s contributions

All authors contributed equally in the preparation of this manuscript.



666

(1]
2]

(3]

4]
5]
6]
7
8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22

[23]

[24]

25]

Shahroud Azami

References

B. S. Acharya, A-O’Farrell Figurea, C. M. Hull, and B. J. Spence, Branes at Canonical
singularities and holography, Adv. Theor. Math. Phys. 2 (1999), 1249-1286.

I. Agricola and T. Friedrich, Killing spinors in super gravity with 4-fluzes, Class. Quant.
Grav. 20 (2003), 4707-4717.

S. Azami, Generalized Ricci solitons of three-dimensional Lorentzian Lie groups asso-
ctated canonical connections and Kobayashi-Nomizu connections, J. Nonlinear Math.
Phys. 30 (2023), 1-33.

A. M. Blaga, Cononical connections on para-Kenmotsu manifolds, Novi Sad J. Math.
45 (2015), no. 2, 131-142.

A. M. Blaga, n-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2016),
no. 2, 489-496.

A. M. Blaga, n-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20
(2015), 1-13.

A. M. Blaga, Torse-forming n-Ricci solitons in almost paracontact n-Einstein geometry,
Filomat,31 (2017), no. 2, 499-504.

D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics
Vol 509. Springer-Verlag, Berlin-New York, 1976.

D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
Mathematics, Vol. 203. Birkhauser Boston Inc. 2002.

D. E. Blair, The theory of quasi-Sasakian structure, J. Differential Geo. 1 (1967), 331—
345.

C. Calin and M. Crasmareanu, From the FEisenhart problem to Ricci solitons in f-
Kenmotsu manifolds, Bull. Malays. Math. Soc. 33 (2010), no. 3, 361-368.

G. Calvaruso, Three-dimensional homogeneous generalized Ricct solitons, Mediterr. J.
Math. 14 (2017), no. 5, 1-21.

T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties,
Helv. Phys. Acta. 69 (1996) 344-347.

T. Chave and G. Valent, On a class of compact and non-compact quasi-Einstein metrics
and their renormalizability properties, Nuclear Phys. B. 478 (1996) 758-778.

B. Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons,
Kragujevac J. Math. 41 (2017), no. 2, 239-250.

B. Y. Chen, A simple characterization of generalized Robertson-Walker space-times,
Gen. Relativity Gravitation, 46 (2014), no. 12, Article ID 1833.

J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space
form, Tohoku Math. J. 61 (2009), no. 2, 205-212.

U. C. De and A. Sarkar,On three-dimensional quasi-Sasakian manifolds, SUT Journal
of Mathematics 45 (2009), 59-71.

U. C. De and A. K. Sengupta, Notes on three-dimensional quasi-Sasakian manifolds,
Demonstratio Mathematica XXXVII (3) (2004), 655-660.

T. Friedrichand and S. Ivanov, Parallel spinors and connections with skew symmetric
torsion in string theory, Asian J. Math. 6 (2002), 303-336.

R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Con-
temp. Math. Santa Cruz, CA, 1986, 71, American Math. Soc. 1988, 237-262.

A. Haseeb, S. Pandey, and R. Prasad, Some results on n-Ricci solitons in quasi-Sasakian
3-manifolds, Commun. Korean Math. Soc. 36 (2021), no. 2, 377-387.

D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai
Math. J. 4 (1981), no. 1, 1-27.

P. Majhi, U. C. De, and D. Kar, n-Ricci Solitons on Sasakian 3-Manifolds, Anal. de
Vest Timisoara LV (2) (2017), 143-156.

M. A. Mekki and A. M. Cherif, Generalised Ricci solitons on Sasakian manifolds,
Kyungpook Math. J. 57 (2017), 677-682.



[26]
27]
28]
29]
(30]
(31]
(32]

(33]
(34]

(35]

(36]
(37)

(38]
(39]
(40]
(41]

42]

Generalized n-Ricci solitons on quasi-Sasakian 3-manifolds 667

P. Nurowski and M. Randall, Generalized Ricci solitons, J. Geom. Anal. 26 (2016),
1280-1345.

Z. Olszak, Normal almost contact metric manifolds of dimension 3, Ann. Polon. Math.
47 (1986), 41-50.

Z. Olszak, On three-dimensional conformally flat quasi-Sasakian manifolds, Period.
Math. Hungar. 33 (1996), 105-113.

S. Y. Perktas and A. Yildiz, On Quasi-Sasakian 3-manifolds with respect to the
Schouten-van- Kampen connection, Int. Electron. J. Geom. 13 (2020), no. 2, 62-67.

D. G. Prakasha and B. S. Hadimani, n-Ricci solitons on para-Sasakian manifolds, J.
Geometry 108 (2017), 383-392.

A. Sarkar, A. Sil, and D. Biswas, A study on three-dimensional quasi-Sasakian amni-
folds, Indian J. Math. 59 (2017), 209-225.

A. Sarkary, A. Silz, and A. K. Paul, On three-dimensional quasi-Sasakian, Applied
Mathematics E-Notes 19 (2019), 55-64.

J. A. Schouten, Ricci Calculus, Springer-Verlag, Berlin, 1954.

M. D. Siddiqi, Generalized n-Ricci solitons in trans Sasakian manifolds, Eurasian bull-
tein of mathematics 1 (2018), no. 3, 107-116.

A. F. Solovév, On the curvature of the connection induced on a hyperdistribution in a
Riemannian space, Geom. Sb. 19 (1978), 12-23.

A. F. Solovév, The bending of hyperdistribution, Geom. Sb. 20 (1979), 101-112.

A. F. Solovév, Second fundemamental form of a distribution, Mat. Zametki 35 (1982),
139-146.

S. Tanno, Quasi-Sasakian structures of rank 2p + 1, J. Differential Geom. 5 (1971),
317-324.

M. Turana, C. Yetima, and S. K. Chaubey, On quasi-Sasakian 3-manifolds admitting
n-Ricci solitons, Filomat 33 (2019), no. 15, 4923-4930.

K. Yano, Concircular geometry I. Concircular tranformations, Proc. Imp. Acad. Tokyo
16 (1940), 195-200.

K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad. Tokyo
20 (1944), 340-345.

K. Yano and B. Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai
Math. Sem. Rep. 23 (1971), no. 3, 343-350.

Shahroud Azami

Department of Pure Mathematics, Faculty of Science,
Imam Khomeini International University, Qazvin, Iran.
E-mail: azami@sci.ikiu.ac.ir



