• 제목/요약/키워드: generalized Poisson

검색결과 107건 처리시간 0.025초

Effects of Overdispersion on Testing for Serial Dependence in the Time Series of Counts Data

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • 제17권6호
    • /
    • pp.829-843
    • /
    • 2010
  • To test for the serial dependence in time series of counts data, Jung and Tremayne (2003) evaluated the size and power of several tests under the class of INARMA models based on binomial thinning operations for Poisson marginal distributions. The overdispersion phenomenon(i.e., a variance greater than the expectation) is common in the real world. Overdispersed count data can be modeled by using alternative thinning operations such as random coefficient thinning, iterated thinning, and quasi-binomial thinning. Such thinning operations can lead to time series models of counts with negative binomial or generalized Poisson marginal distributions. This paper examines whether the test statistics used by Jung and Tremayne (2003) on serial dependence in time series of counts data are affected by overdispersion.

Multiprocess Dynamic Poisson Mode1s: The Covariates Case

  • Shim, Joo-Yong;Sohn, Joong-Kweon
    • Journal of the Korean Statistical Society
    • /
    • 제27권3호
    • /
    • pp.279-288
    • /
    • 1998
  • We propose a multiprocess dynamic Poisson model for the analysis of Poisson process with the covariates. The algorithm for the recursive estimation of the parameter vector modeling time-varying effects of covariates is suggested. Also the algorithm for forecasting of numbers of events at the next time point based on the information gathered until the current time is suggested.

  • PDF

일반화 감마분포에 근거한 소프트웨어 최적방출시기에 관한 비교 연구 (A Study on Optimal Release Time for Software Systems based on Generalized Gamma Distribution)

  • 김재욱;김희철
    • 디지털산업정보학회논문지
    • /
    • 제6권1호
    • /
    • pp.55-67
    • /
    • 2010
  • Decision problem called an optimal release policies, after testing a software system in development phase and transfer it to the user, is studied. The applied model of release time exploited infinite non-homogeneous Poisson process. This infinite non-homogeneous Poisson process is a model which reflects the possibility of introducing new faults when correcting or modifying the software. The failure life-cycle distribution used generalized gamma type distribution which has the efficient various property because of various shape and scale parameter. Thus, software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement becomes an optimal release policies. In a numerical example, after trend test applied and estimated the parameters using maximum likelihood estimation of inter-failure time data, estimated software optimal release time.

A generalized regime-switching integer-valued GARCH(1, 1) model and its volatility forecasting

  • Lee, Jiyoung;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • 제25권1호
    • /
    • pp.29-42
    • /
    • 2018
  • We combine the integer-valued GARCH(1, 1) model with a generalized regime-switching model to propose a dynamic count time series model. Our model adopts Markov-chains with time-varying dependent transition probabilities to model dynamic count time series called the generalized regime-switching integer-valued GARCH(1, 1) (GRS-INGARCH(1, 1)) models. We derive a recursive formula of the conditional probability of the regime in the Markov-chain given the past information, in terms of transition probabilities of the Markov-chain and the Poisson parameters of the INGARCH(1, 1) process. In addition, we also study the forecasting of the Poisson parameter as well as the cumulative impulse response function of the model, which is a measure for the persistence of volatility. A Monte-Carlo simulation is conducted to see the performances of volatility forecasting and behaviors of cumulative impulse response coefficients as well as conditional maximum likelihood estimation; consequently, a real data application is given.

2단계 서비스와 일반휴가 대기행렬 (Two-phase Queueing System with Generalized Vacation)

  • 김태성;채경철
    • 대한산업공학회지
    • /
    • 제22권1호
    • /
    • pp.95-104
    • /
    • 1996
  • We consider a two-phase queueing system with generalized vacation. Poisson arrivals receive a batch type service in the first phase and individual services in the second phase. The server takes generalized vacation when the system becomes empty. Generalized vacation includes single vacation, multiple vacation, and other types. We consider both gated batch service and exhaustive batch service. This is an extension of the model presented by Selvam and Sivasankaran [6].

  • PDF

집중호우사상의 발생횟수 분석을 위한 확률분포의 비교 (Comparison of probability distributions to analyze the number of occurrence of torrential rainfall events)

  • 김상욱;김형배
    • 한국수자원학회논문집
    • /
    • 제49권6호
    • /
    • pp.481-493
    • /
    • 2016
  • 본 연구에서는 최근 기후변화로 인한 집중호우의 발생횟수의 경향을 확률적으로 분석함에 있어 1개월 동안 80 mm/day 이상의 강우사상을 집중호우로 정의하여, 대구 및 부산 강우관측소로부터 수집된 384개월 동안의 집중호우를 분석하였다. 집중호우 월별 발생횟수와 같은 형식의 자료의 확률적 분석은 대개 Poisson 분포 (POI)가 사용되나 자료에 포함된 0자료의 과잉은 확률분포를 왜곡시키는 문제를 발생시킨다. 본 연구에서는 이 문제를 개선하기 위하여 개발된 일반화 Poisson 확률분포 (GPD), 0-과잉 Poisson 확률분포 (ZIP), 0-과잉 일반화 Poisson 확률분포 (ZIGP), Bayesian 0-과잉 일반화 Poisson 확률분포 (Bayesian ZIGP)를 집중호우 자료에 적용하고, 5개 모형의 특성을 비교분석하였으며, Bayesian ZIGP 모형의 구축에 있어서는 정보적 사전분포를 사용함으로써 모형의 정확도를 개선하였다. 분석결과 분석하고자 하는 자료에 0이 과다하게 포함되어 있는 경우 POI 및 GPD 분포는 관측결과와는 다른 결과를 제시하여 적절한 모형으로 고려되지 못함을 알 수 있었다. 5가지 모형 중 정보적 사전분포를 탑재한 Bayesian ZIGP 모형이 가장 관측 자료와 유사한 결과를 도출하였으나 모형의 구축에 수반되는 실용적인 측면을 고려하면 ZIP 모형도 충분히 사용될 수 있는 모형으로 추천되었다.

GEOMETRIC AND APPROXIMATION PROPERTIES OF GENERALIZED SINGULAR INTEGRALS IN THE UNIT DISK

  • Anastassiou George A.;Gal Sorin G.
    • 대한수학회지
    • /
    • 제43권2호
    • /
    • pp.425-443
    • /
    • 2006
  • The aim of this paper is to obtain several results in approximation by Jackson-type generalizations of complex Picard, Poisson-Cauchy and Gauss-Weierstrass singular integrals in terms of higher order moduli of smoothness. In addition, these generalized integrals preserve some sufficient conditions for starlikeness and univalence of analytic functions. Also approximation results for vector-valued functions defined on the unit disk are given.

ML estimation using Poisson HGLM approach in semi-parametric frailty models

  • Ha, Il Do
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1389-1397
    • /
    • 2016
  • Semi-parametric frailty model with nonparametric baseline hazards has been widely used for the analyses of clustered survival-time data. The frailty models can be fitted via an auxiliary Poisson hierarchical generalized linear model (HGLM). For the inferences of the frailty model marginal likelihood, which gives MLE, is often used. The marginal likelihood is usually obtained by integrating out random effects, but it often requires an intractable integration. In this paper, we propose to obtain the MLE via Laplace approximation using a Poisson HGLM approach for semi-parametric frailty model. The proposed HGLM approach uses hierarchical-likelihood (h-likelihood), which avoids integration itself. The proposed method is illustrated using a numerical study.

Safety Critical I&C Component Inventory Management Method for Nuclear Power Plant using Linear Data Analysis Technic

  • Jung, Jae Cheon;Kim, Haek Yun
    • 시스템엔지니어링학술지
    • /
    • 제16권1호
    • /
    • pp.84-97
    • /
    • 2020
  • This paper aims to develop an optimized inventory management method for safety critical Instrument and Control (I&C) components. In this regard, the paper focuses on estimating the consumption rate of I&C components using demand forecasting methods. The target component for this paper is the Foxboro SPEC-200 controller. This component was chosen because it has highest consumption rate among the safety critical I&C components in Korean OPR-1000 NPPs. Three analytical methods were chosen in order to develop the demand forecasting methods; Poisson, Generalized Linear Model (GLM) and Bootstrapping. The results show that the GLM gives better accuracy than the other analytical methods. This is because the GLM considers the maintenance level of the component by discriminating between corrective and preventive.

Bayesian Methods for Generalized Linear Models

  • Paul E. Green;Kim, Dae-Hak
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.523-532
    • /
    • 1999
  • Generalized linear models have various applications for data arising from many kinds of statistical studies. Although the response variable is generally assumed to be generated from a wide class of probability distributions we focus on count data that are most often analyzed using binomial models for proportions or poisson models for rates. The methods and results presented here also apply to many other categorical data models in general due to the relationship between multinomial and poisson sampling. The novelty of the approach suggested here is that all conditional distribution s can be specified directly so that staraightforward Gibbs sampling is possible. The prior distribution consists of two stages. We rely on a normal nonconjugate prior at the first stage and a vague prior for hyperparameters at the second stage. The methods are demonstrated with an illustrative example using data collected by Rosenkranz and raftery(1994) concerning the number of hospital admissions due to back pain in Washington state.

  • PDF