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Multiprocess Dynamic Poisson Models:
The Covariates Casel

Joo Yong Shim and Joong Kweon Sohn!

ABSTRACT

We propose a multiprocess dynamic Poisson model for the analysis of
Poisson process with the covariates. The algorithm for the recursive esti-
mation of the parameter vector modeling time-varying effects of covariates
is suggested. Also the algorithm for forecasting of numbers of events at the
next time point based on the information gathered until the current time is
suggested.

Keywords: Multiprocess dynamic generalized linear model; Covariate; Recursive
estimation

1. INTRODUCTION

In the static case the mean of the Poisson distribution is constant over time,
but in the dynamic case it is allowed to vary over time. Harvey and Durbin(1986)
proposed a modified structural approach to the problem of estimating and fore-
casting in the dynamic case. West, Harrison and Migon(1985) developed the
dynamic generalized linear model which allows the use of an one-dimensional
exponential family observation distribution. The guide relationship relates the
natural parameter at time ¢, denoted as A;, of the one-dimensional exponential
family observation distribution to the parameter vector at time ¢, denoted as f;,
via g(\;) = Zif3;, where Z; is the known (1xp) vector, 3; is the unknown (px1)
parameter vector and g(-) is a specified nonlinear function. The prior distribu-
tion is chosen to be conjugate family member having same first two moments as
9~ Y(Z;$3;). The evolution of the parameter vector is determined by the evolution
equation, 8; = G;03;—1 + w;, where G; is a known (pxp) matrix at time ¢ and w;
is the evolution error vector. The distribution of w; which is independent of §; is
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specified in terms of the mean vector 0 and the variance-covariance matrix W;.
Harrison and Stevens(1971,1976) introduced the idea of the multiprocess model
into the dynamic linear model to consider that there are K different models to
be applied with K different probabilities at each time, where K different models
differ in the distribution of the parameter vector. To estimate the mean and the
variance-covariane matrix of the parameter vector, the mixture of K distribu-
tions should be collapsed into a single distribution. The method of collapsing the
mixture of K distributions into a single distribution is based on equating first two
moments of the mixture to first two moments of the single distribution, where
the optimality criterion is minimizing the Kullerbeck-Liebler distance from the
mixture to the single distribution. Bolstad(1988) developed the multiprocess dy-
namic generalized linear model by incorporating the multiprocess approach into
the dynamic generalized linear model. Gamerman(1992) proposed the dynamic
Poisson model by applying the dynamic generalized linear model to the Poisson
process. Bolstad(1995) proposed the multiprocess dynamic Poisson model for
the no-covariate case by applying the multiprocess dynamic idea to the Poisson
process.

In this article we propose the multiprocess dynamic Poisson model for the
covariates case to suggest the recursive estimation of the parameter vector mod-
eling time-varying effects of covariates and the forecasting of the number of the
next events. In the single dynamic model, the prior mean of the parameter vector
at the next time is equal to the posterior mean of the parameter vector at the
current time. But, in the proposed model, the prior mean of the parameter vector
at the next time is not always equal to the posterior mean of the parameter vector
at the current time, due to the consideration of K different prior distributions of
the parameter vector at each time. Thus the proposed model can provide more
reasonable prior distribution of the parameter vector than the single dynamic
model. The proposed model is described in Section2. The algorithms for re-
cursive estimations of the parameter vector and forecasting the number of next
events are provided in Section 3 and Section 4, respectively. The performance of
estimation and forecasting is illustrated via the simulation study in Section 5.

2. MODEL DESCRIPTIONS

The number of events at time 17 is assumed to follow the Poisson distribution
which has a time-varying parameter A; for ¢ = 1,2,-.-. We denote it by

(Yil\i) ~ Poisson(A;),
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where Y; is the number of events at time 7, A; is the mean of the Poisson population
of Y;, which is related to the parameter vector §; modeling time-varying effects
of covariates by the guide relationship. Let D; be a set of information gathered
until time ¢ which can be represented as the set of numbers of events at previous
time points including time .

We define the perturbation of time i as the variation of distributions of the
parameter vector 3; which are affected by different variance-covariane matrices of
the evolution error vector w;. Let ; be the perturbation index variable at time 4
that determines which distribution of the parameter vector §; is applied. When
o; =1, the distribution of the parameter vector f3; is governed by the evolution
equaton §; = ;1 +w;, where w; is the evolution error vector whose distribution
is specified in terms of the mean vector 0 and the variance-covariance matrix
Wi(l), [l = 1,2,--- K. The prior index probabilty at time ¢ which is the prior
probability of a perturbation index variable of time i, Wz(l) = P(a; = l|Dj_1), is
assumed to be fixed prior to obtaining any information from observation the time
i.

The multiprocess dynamic Poisson model for the covariates case is defined as
follows.

i) Observation equation :

(Yi|Ai) ~ Poisson(A;) fori=1,2,---.

i1) Guide relationship:
Ai = exp(Ziﬂi) for 1=1,2,---,

where Z; is the known (1xp) covariate vector and §; is the (px 1) parameter
vector.

iii) Evolution equation:
Bi=PBim1+w for i=1,2,--,

where w; is the evolution error vector whose distribution is specified in terms
of the mean vector 0 and the variance-covariance matrix which depends on
the value of the perturbation index variable of time ¢ such as the variance-
covariance matrix of w; given o; = [ is Wi(l), [l =1,2,---,K, and w; is
independent of the parameter vector £;_;.
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3. RECURSIVE ESTIMATIONS OF THE PARAMETER
VECTOR

The process is started with the initial distribution of the parameter vector at
time 0, By, specified in terms of the mean vector Eo and the variance-covariance
matrix Vg, where Eo and Vj are given prior to time 1.

At each time 7 — 1, the posterior distribution of §;_; given a;_; = k is specified
in terms of the mean vector B\( ) and the variance-covariance matrix V( 2, which
is denoted by

(Bilai1 = k, Di_1) ~ [B B;_ 1’V'(_k2]-
At time 4, each of K posterior distributions of §;_; obtained at time 7 — 1 leads
to K prior distributions of §; as
(Bilei-1 = k, 05 =1, D;y) ~ [a{*, R,

where
az(-kl) = ﬁ(k)l and R(kl) V(k) + W(l)

17—

The joint prior distribution of §; and log ); is obtained by the guide relation-

ship,
Bi (kD) RD  glkD)
Q; 1 = k, Q; = l’Di_l ~ T , 1 , I3 , 31
( log A; | fi(kl) Sz'(kl) qékl) (3.1)
where

f(kl) Zia (lcl) S(kl) ZR(kl) qlgkl) _ Sz(kl)Z{.

Here the prior distribution of A; is assumed to be a conjugate gamma distribution
Gal(b; b9 , r(kl) ), where b(kl) and r(kl) are obtained in terms of fi(kl) and ngkl) in (3.1)
as, respectively, g; ~1(k1) and g; (k) exp(— fz-(kl)).

With information from the observation, y;, the posterior distribution of \; is
obtained as

D 1), (3.2)

i

()\i|a,~_1 =k,o; = l,Di) ~ Ga(bgkl) + Yy, T

From (3.2) the mean and the variance of log); given (o;—; = k,a; = I, D;) are
obtained as, respectively, 7(b§kl) + i) - log(rz(kl)) and ﬁ/(bgkl) + ¥i), where y(-) is
the digamma function.

Applying the linear Bayes estimation on (3.1) the posterior distribution of §;
given D; is obtained as

(Bilai-1 =k, s =1, D;) ~ [B,W),Vi(kl)],
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where
B;(kl) _ agkz) + Sl(kl)qi—l(kl)( @ ) |0y~ Jog(1 rq 1K) o (— fi(kl))) 3 fi(kl))
and

v _ gk _ gk Slgkz)'q;z(kz)< (@ 4y (kz))

The posterior distribution of (Bilei = 1, D;) is represented as the mixture of
K posterior distributions of (8;Ja;—1 = k,; = I, D;) with the posterior index
probability pz(-kl). Using that

p(yilai—1 = k,a; =1, D;_4)
= /P(yil)\i,ai—l =k,0; =1, D;_1)p(Ailic1 = k, 0 =1, D;_1)d);

Ty +6) o o0 1 v
I‘(b(kl))I‘(y +1) 'r(kl) +1 frgkl) +1"

the posterior index probability is obtained as
™ = Plaj1 =k, =1|D;)
x plyilait = k,a; =1, D;_1)pr)

where pZ(k)1 = P(a;—1 = k|D;—1). Thus the posterior distribution of §; given

o; = | and D; has the mean vector 3( ) and the variance-covariance matrix V( )
where

K

Z kl) (kl

k=1
and

K
v = S 4+ @Y - B EP - BEY 1 .

) ]

!

Followed by the smoothing steps(West and Harrison, 1989), the smoothed dis-
tribution of 8; given (o; = k,aiy1 = [,Dy) fori < N =1,2,--- is obtained in
terms of the mean vector and the variance-covariance as respectively,

ﬁz();\ll) = E(Biles = k,aiy1 =1,Dy)
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and
VR = V(Bilos = k ais1 =1, Dy),

1

which lead to the mean vector and the variance-covariance of f3; given Dy, 7 < N,
as respectively,

K
Bin = EBIDN) = Y BRpE) (3.3)
k,dl

and

K
Vin = V(BIDN) = Y V% + (Biw - BE) B — BEN ). (3.)
k,l

4. FORECASTING OF THE NUMBER OF EVENTS

In this section we obtain the forecasted number of events in terms of E[Y;|D;]
based on information gathered until time 3.

K prior distributions of §;+; given D; are obtained from each of K posterior
distributions of §; given D; through the evolution equation, which are

Birrles = kyaipr =1, D;) ~ [ R¥) k1 =1, K.

By the guide relationship the prior distribution of log A\;;; is specified in terms

of the mean and the variance such as, respectively, fl( +) and qgfl), where
ki ki k ki
fz(+1) - 1+1a§+1) and qz(+1) = Zi+1R.S+1)Z, (4.1)

Here the prior distribution of A;;; is assumed to be a conjugate gamma dis-

tribution (bg’fl) , ff_ll)) Note that b(kq and rz(f_l) are obtained in terms of the

mean and the variance of the distribution of log A\;41 given D; in (4.1) as, re-

spectively, g; +1(kl) and g;/y ~ Lk exp(— fi(_’,fll)) Then the mean and the variance of
kD hd 5k

(Yiq1los = k, 41 =, D;) is obtained as, respectively, iz;, ; and v {, where

(kD)
~(kl 2
H§+2 = E(My1|las =k, 041 =1, D;) = (le)

H—l

and

Al(ill) = EQuplei =k a1 =1, Di) + V(Niyiles = k, 41 =1, D;)

ki kl
o
(lcl) (kl)2

Tivl  Tit1
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Thus we obtain the mean and the variance of Y;+; given D;, respectively, as [i; 41
and v;41, where

vt = 32 A0, »
k=1
and
Vit1 = Z[U,H-l- Biv1 — ﬁgi’f)(ﬁm Nfﬁ))]p(k) 1(21 (4.3)

kil=1

5. ILLUSTRATIONS

In this section we consider the performance of the estimation proposed in
Section 3 and Section 4 via the simulation study. The data set consists of 100
simulated random samples from the Poisson population, whose mean is 4 for the
first 25 samples, 8 for the next 25 samples, 4 for the next 25 samples, and 6 for
last 25 samples.

The sampling distribution of the number of events at each time is assumed
to follow the Poisson distribution such as,

(Y;|\i) ~ Poisson(X;), fori=1,2,---,100,

where Y; is the number of events at time 4, A; is the mean of the Poisson population
at time 7. In the model, the log \; is assumed to be the linear function of the
parameter vector §; such as A; = exp(Z;05;), with Z;=( 1,21;) and B;=(8o:,01:),
where each value of z; for 4 = 1,2,--- 100 is randomly chosen from numbers
between 1 and 2. The initial distribution is assumed to be

(Bo| Do) ~ (0,101},

and the variance-covariance matrix of the evolution error vector is assumed to be

0 0 0 0
w = @) _
: ( 0 0.01 ) > Wi 0 1.0 /'

which implies that Gy; is a time-constant parameter but fi; is a time-varying
parameter. We assurne that there are two perturbations for the parameter Fy; at
each time, steady state and sudden change numbered by 1 and 2, respectively.
The model selection probabilities are assumed to be

=095 «® =005 i=1,--,100.
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Figure 5.1 shows the estimate of the mean of §y; given Dyqg, where the estimate
of the mean of fy; given Djgg is obtained as 1.663 , which are computed from
(3.3) with N = 100. Figure 5.2 shows the posterior estimate and 95% CI for the
mean of each sample from the Poisson population of changing means computed
from (3.2). Figure 5.3 shows the observed value and 1-step ahead forecasted value
of each sample computed from (4.2). In figures one can see that the estimates

react to the changes in the mean quickly.
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Figure 5.1: The Estimated Mean of The Parameter 31; given Dig
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solid == true mean, * = posterior estimate, doited = 85% CI for the mean of each sample

Figure 5.2: Posterior Estimate and 95% CI for Each Mean
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