• Title/Summary/Keyword: generalized Hyers-Ulam Stability

Search Result 164, Processing Time 0.02 seconds

APPROXIMATION OF CUBIC MAPPINGS WITH n-VARIABLES IN β-NORMED LEFT BANACH MODULE ON BANACH ALGEBRAS

  • Gordji, Majid Eshaghi;Khodaei, Hamid;Najati, Abbas
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.1063-1078
    • /
    • 2011
  • Let M = {1, 2, ${\ldots}$, n} and let V = {$I{\subseteq}M:1{\in}I$}. Denote M\I by $I^c$ for $I{\in}V$. The goal of this paper is to investigate the solution and the stability using the alternative fixed point of generalized cubic functional equation $ \sum\limits_{I{\in}V}f(\sum\limits_{i{\in}I}a_ix_i-\sum\limits_{i{\in}I^c}a_ix_i)=2{^{n-2}{a_1}}\sum\limits_{i=2}^na_i^2[f(x_1+x_i)+f(x_1-x_i)]+2{^{n-1}{a_1}(a^2_1-\sum\limits_{i=2}^2a^2_i)f(x_1)$ in ${\beta}$-Banach modules on Banach algebras, where $a_1,{\ldots},a_n{\in}\mathbb{Z}{\backslash}\{0\}$ with $a_1{\neq}={\pm}1$ and $a_n=1$.

DISTRIBUTIONAL SOLUTIONS OF WILSON'S FUNCTIONAL EQUATIONS WITH INVOLUTION AND THEIR ERDÖS' PROBLEM

  • Chung, Jaeyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1157-1169
    • /
    • 2016
  • We find the distributional solutions of the Wilson's functional equations $$u{\circ}T+u{\circ}T^{\sigma}-2u{\otimes}v=0,\\u{\circ}T+u{\circ}T^{\sigma}-2v{\otimes}u=0,$$ where $u,v{\in}{\mathcal{D}}^{\prime}({\mathbb{R}}^n)$, the space of Schwartz distributions, T(x, y) = x + y, $T^{\sigma}(x,y)=x+{\sigma}y$, $x,y{\in}{\mathbb{R}}^n$, ${\sigma}$ an involution, and ${\circ}$, ${\otimes}$ are pullback and tensor product of distributions, respectively. As a consequence, we solve the $Erd{\ddot{o}}s$' problem for the Wilson's functional equations in the class of locally integrable functions. We also consider the Ulam-Hyers stability of the classical Wilson's functional equations $$f(x+y)+f(x+{\sigma}y)=2f(x)g(y),\\f(x+y)+f(x+{\sigma}y)=2g(x)f(y)$$ in the class of Lebesgue measurable functions.

ON AN ADDITIVE FUNCTIONAL INEQUALITY IN NORMED MODULES OVER A $C^*$-ALGEBRA

  • An, Jong-Su
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.393-400
    • /
    • 2008
  • In this paper, we investigate the following additive functional inequality (0.1) ||f(x)+f(y)+f(z)+f(w)||${\leq}$||f(x+y)+f(z+w)|| in normed modules over a $C^*$-algebra. This is applied to understand homomor-phisms in $C^*$-algebra. Moreover, we prove the generalized Hyers-Ulam stability of the functional inequality (0.2) ||f(x)+f(y)+f(z)f(w)||${\leq}$||f(x+y+z+w)||+${\theta}||x||^p||y||^p||z||^p||w||^p$ in real Banach spaces, where ${\theta}$, p are positive real numbers with $4p{\neq}1$.

  • PDF

ON A COMPOSITE FUNCTIONAL EQUATION RELATED TO THE GOLAB-SCHINZEL EQUATION

  • Gordji, Madjid Eshaghi;Rassias, Themistocles M.;Tial, Mohamed;Zeglami, Driss
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.387-398
    • /
    • 2016
  • Let X be a vector space over a field K of real or complex numbers and $k{\in}{\mathbb{N}}$. We prove the superstability of the following generalized Golab-Schinzel type equation $f(x_1+{\limits\sum_{i=2}^p}x_if(x_1)^kf(x_2)^k{\cdots}f(x_{i-1})^k)={\limits\prod_{i=1}^pf(x_i),x_1,x_2,{\cdots},x_p{\in}X$, where $f:X{\rightarrow}K$ is an unknown function which is hemicontinuous at the origin.